論文の概要: Region of Interest focused MRI to Synthetic CT Translation using
Regression and Classification Multi-task Network
- arxiv url: http://arxiv.org/abs/2203.16288v1
- Date: Wed, 30 Mar 2022 13:29:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-31 14:25:42.108187
- Title: Region of Interest focused MRI to Synthetic CT Translation using
Regression and Classification Multi-task Network
- Title(参考訳): 回帰・分類マルチタスクネットワークを用いたMRIから合成CTへの関心領域
- Authors: Sandeep Kaushik, Mikael Bylund, Cristina Cozzini, Dattesh Shanbhag,
Steven F Petit, Jonathan J Wyatt, Marion I Menzel, Carolin Pirkl, Bhairav
Mehta, Vikas Chauhan, Kesavadas Chandrasekharan, Joakim Jonsson, Tufve
Nyholm, Florian Wiesinger, and Bjoern Menze
- Abstract要約: 画像の構造的,定量的な精度を目的としたゼロエコタイム(ZTE)MRIからの合成CT(sCT)生成法を提案する。
画像中の空間的にスパースな領域を選好する損失関数を提案する。
本稿では,RoIに着目したマルチタスクネットワークが,ネットワークの他の構成よりも優れた性能を実現する方法を示す。
- 参考スコア(独自算出の注目度): 2.8023171492652508
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we present a method for synthetic CT (sCT) generation from
zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the
image, with a particular focus on the accurate bone density value prediction.
We propose a loss function that favors a spatially sparse region in the image.
We harness the ability of a multi-task network to produce correlated outputs as
a framework to enable localisation of region of interest (RoI) via
classification, emphasize regression of values within RoI and still retain the
overall accuracy via global regression. The network is optimized by a composite
loss function that combines a dedicated loss from each task. We demonstrate how
the multi-task network with RoI focused loss offers an advantage over other
configurations of the network to achieve higher accuracy of performance. This
is relevant to sCT where failure to accurately estimate high Hounsfield Unit
values of bone could lead to impaired accuracy in clinical applications. We
compare the dose calculation maps from the proposed sCT and the real CT in a
radiation therapy treatment planning setup.
- Abstract(参考訳): 本研究では,ゼロエコ時間(ZTE)MRIから合成CT(sCT)を生成する手法を提案する。
画像中の空間的にスパースな領域を好む損失関数を提案する。
マルチタスクネットワークが相関出力を生成できる能力を利用して、分類による関心領域(RoI)のローカライズを可能にし、RoI内の値の回帰を強調し、グローバルレグレッションによる全体的な精度を維持している。
ネットワークは、各タスクからの専用損失を組み合わせた複合損失関数によって最適化される。
本稿では,RoIに着目したマルチタスクネットワークが,ネットワークの他の構成よりも優れた性能を実現する方法を示す。
これは、骨の高ハウンズフィールド単位値を正確に推定できないことが臨床応用の精度を損なう可能性があるsCTに関係している。
放射線治療計画において,提案したsCTと実CTの線量計算マップを比較した。
関連論文リスト
- AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution [12.503822675024054]
CTは産業用非破壊検査や診断において重要な役割を担っている。
スパースビューCT再構成は,少数のプロジェクションのみを使用しながら,高品質なCT像を再構成することを目的としている。
本稿では,減衰係数推定と入射ニューラル分布に基づく自己教師型手法であるAC-INDを紹介する。
論文 参考訳(メタデータ) (2024-09-11T10:34:41Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) は、異常に不適切なCT再構成逆問題に対処するために設計された、教師なしのフレームワークである。
DPERは、半二次分割法(HQS)アルゴリズムを採用し、逆問題からデータ忠実度とサブプロブレム前の分布に分解する。
LACTにおけるDPERの性能評価と2つの公開データセットを用いた超SVCT再構成に関する総合的な実験を行った。
論文 参考訳(メタデータ) (2024-04-27T12:55:13Z) - Teeth Localization and Lesion Segmentation in CBCT Images using
SpatialConfiguration-Net and U-Net [0.4915744683251149]
歯の局所化と根尖部病変の分節化は臨床診断と治療計画にとって重要な課題である。
本研究では,2つの畳み込みニューラルネットワークを用いた深層学習手法を提案する。
この方法は、歯の局所化に対する97.3%の精度と、それぞれ0.97および0.88の有望な感度と特異性を達成し、その後の病変検出を行う。
論文 参考訳(メタデータ) (2023-12-19T14:23:47Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
コーンビームCT(CBCT)は画像誘導放射線治療中に定期的に収集される。
近年, 深層学習に基づくCBCT強調法は, 人工物抑制に有望な成果を上げている。
本稿では,高画質CBCT画像から高画質CTライク画像へ変換する特徴指向ディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-01T10:09:01Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
本稿では,AEP-Net と呼ばれる協調的コンテキスト符号化ネットワークを提案する。
具体的には、画像とマスクのより優れた特徴融合のための協調的な特徴変換分岐と、エラー領域の正確な局所化を提案する。
AEP-Netはエラー予測タスクの平均DSCが0.8358,0.8164であり、ピアソン相関係数が0.9873である。
論文 参考訳(メタデータ) (2020-06-25T12:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。