Calibrating constitutive models with full-field data via physics
informed neural networks
- URL: http://arxiv.org/abs/2203.16577v1
- Date: Wed, 30 Mar 2022 18:07:44 GMT
- Title: Calibrating constitutive models with full-field data via physics
informed neural networks
- Authors: Craig M. Hamel and Kevin N. Long and Sharlotte L.B. Kramer
- Abstract summary: We propose a physics-informed deep-learning framework for the discovery of model parameterizations given full-field displacement data.
We work with the weak form of the governing equations rather than the strong form to impose physical constraints upon the neural network predictions.
We demonstrate that informed machine learning is an enabling technology and may shift the paradigm of how full-field experimental data is utilized to calibrate models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The calibration of solid constitutive models with full-field experimental
data is a long-standing challenge, especially in materials which undergo large
deformation. In this paper, we propose a physics-informed deep-learning
framework for the discovery of constitutive model parameterizations given
full-field displacement data and global force-displacement data. Contrary to
the majority of recent literature in this field, we work with the weak form of
the governing equations rather than the strong form to impose physical
constraints upon the neural network predictions. The approach presented in this
paper is computationally efficient, suitable for irregular geometric domains,
and readily ingests displacement data without the need for interpolation onto a
computational grid. A selection of canonical hyperelastic materials models
suitable for different material classes is considered including the
Neo-Hookean, Gent, and Blatz-Ko constitutive models as exemplars for general
hyperelastic behavior, polymer behavior with lock-up, and compressible foam
behavior respectively. We demonstrate that physics informed machine learning is
an enabling technology and may shift the paradigm of how full-field
experimental data is utilized to calibrate constitutive models under finite
deformations.
Related papers
- Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
We discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation.
The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data.
arXiv Detail & Related papers (2022-10-15T17:35:23Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
Deep neural networks are able to learn complex material without the constraints of form approximations.
N-ODE material model is able to capture synthetic data generated from closedform material models.
framework can be used to model a large class of materials.
arXiv Detail & Related papers (2021-10-03T13:11:43Z) - Polyconvex anisotropic hyperelasticity with neural networks [1.7616042687330642]
convex machine learning based models for finite deformations are proposed.
The models are calibrated with highly challenging simulation data of cubic lattice metamaterials.
The data for the data approach is based on mechanical considerations and does not require additional experimental or simulation capabilities.
arXiv Detail & Related papers (2021-06-20T15:33:31Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Gradient-Based Training and Pruning of Radial Basis Function Networks
with an Application in Materials Physics [0.24792948967354234]
We propose a gradient-based technique for training radial basis function networks with an efficient and scalable open-source implementation.
We derive novel closed-form optimization criteria for pruning the models for continuous as well as binary data.
arXiv Detail & Related papers (2020-04-06T11:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.