Understanding the role of single-board computers in engineering and
computer science education: A systematic literature review
- URL: http://arxiv.org/abs/2203.16604v1
- Date: Wed, 30 Mar 2022 18:34:03 GMT
- Title: Understanding the role of single-board computers in engineering and
computer science education: A systematic literature review
- Authors: Jonathan \'Alvarez Ariza, Heyson Baez
- Abstract summary: Single-Board Computers (SBCs) have been employed more frequently in engineering and computer science both to technical and educational levels.
This systematic literature review explores how the SBCs are employed in engineering and computer science.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the last decade, Single-Board Computers (SBCs) have been employed more
frequently in engineering and computer science both to technical and
educational levels. Several factors such as the versatility, the low-cost, and
the possibility to enhance the learning process through technology have
contributed to the educators and students usually employ these devices.
However, the implications, possibilities, and constraints of these devices in
engineering and Computer Science (CS) education have not been explored in
detail. In this systematic literature review, we explore how the SBCs are
employed in engineering and computer science and what educational results are
derived from their usage in the period 2010-2020 at tertiary education. For
that, 154 studies were selected out of n=605 collected from the academic
databases Ei Compendex, ERIC, and Inspec. The analysis was carried-out in two
phases, identifying, e.g., areas of application, learning outcomes, and
students and researchers' perceptions. The results mainly indicate the
following aspects: (1) The areas of laboratories and e-learning, computing
education, robotics, Internet of Things (IoT), and persons with disabilities
gather the studies in the review. (2) Researchers highlight the importance of
the SBCs to transform the curricula in engineering and CS for the students to
learn complex topics through experimentation in hands-on activities. (3) The
typical cognitive learning outcomes reported by the authors are the improvement
of the students' grades and the technical skills regarding the topics in the
courses. Concerning the affective learning outcomes, the increase of interest,
motivation, and engagement are commonly reported by the authors.
Related papers
- Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning [4.804847392457553]
Post-quantum cryptography (PQC) has been identified as the solution to secure existing software systems.
This research proposes a novel active learning approach and assesses the best practices for teaching PQC to undergraduate and graduate students.
arXiv Detail & Related papers (2024-10-17T01:52:03Z) - Bringing active learning, experimentation, and student-created videos in engineering: A study about teaching electronics and physical computing integrating online and mobile learning [0.0]
The main aim of this study was to create an AL methodology to learn electronics, physical computing (PhyC), programming, and basic robotics in engineering through hands-on activities and active experimentation in online environments.
The methodology was conceived using the guidelines of the Integrated Course Design Model (ICDM) and in some courses combining mobile and online learning with an Android app.
The outcomes indicate a good perception of the PhyC and programming activities by the students and suggest that these influence motivation, self-efficacy, reduction of anxiety, and improvement of academic performance in the courses.
arXiv Detail & Related papers (2024-06-02T23:26:27Z) - AI-assisted Learning for Electronic Engineering Courses in High
Education [2.67766280323297]
The study includes the evaluation and reflection of different stakeholders: students, lecturers, and engineers.
The findings of this study shed light on the benefits and limitations of ChatGPT as an AI tool, paving the way for innovative learning approaches in technical disciplines.
arXiv Detail & Related papers (2023-11-02T07:48:10Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - Application of Artificial Intelligence and Machine Learning in
Libraries: A Systematic Review [0.0]
The aim of this study is to provide a synthesis of empirical studies exploring application of artificial intelligence and machine learning in libraries.
Data was collected from Web of Science, Scopus, LISA and LISTA databases.
Findings show that the current state of the AI and ML research that is relevant with the LIS domain mainly focuses on theoretical works.
arXiv Detail & Related papers (2021-12-06T07:33:09Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - A Survey of Knowledge Tracing: Models, Variants, and Applications [70.69281873057619]
Knowledge Tracing is one of the fundamental tasks for student behavioral data analysis.
We present three types of fundamental KT models with distinct technical routes.
We discuss potential directions for future research in this rapidly growing field.
arXiv Detail & Related papers (2021-05-06T13:05:55Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Computer-Aided Personalized Education [15.811740322935476]
The number of US students taking introductory courses has grown three-fold in the past decade.
Massive open online courses (MOOCs) have been promoted as a way to ease this strain.
Personalized education relying on computational tools can address this challenge.
arXiv Detail & Related papers (2020-07-07T18:00:04Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.