Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning
- URL: http://arxiv.org/abs/2410.13140v1
- Date: Thu, 17 Oct 2024 01:52:03 GMT
- Title: Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning
- Authors: Ainaz Jamshidi, Khushdeep Kaur, Aryya Gangopadhyay, Lei Zhang,
- Abstract summary: Post-quantum cryptography (PQC) has been identified as the solution to secure existing software systems.
This research proposes a novel active learning approach and assesses the best practices for teaching PQC to undergraduate and graduate students.
- Score: 4.804847392457553
- License:
- Abstract: Quantum computing presents a double-edged sword: while it has the potential to revolutionize fields such as artificial intelligence, optimization, healthcare, and so on, it simultaneously poses a threat to current cryptographic systems, such as public-key encryption. To address this threat, post-quantum cryptography (PQC) has been identified as the solution to secure existing software systems, promoting a national initiative to prepare the next generation with the necessary knowledge and skills. However, PQC is an emerging interdisciplinary topic, presenting significant challenges for educators and learners. This research proposes a novel active learning approach and assesses the best practices for teaching PQC to undergraduate and graduate students in the discipline of information systems. Our contributions are two-fold. First, we compare two instructional methods: 1) traditional faculty-led lectures and 2) student-led seminars, both integrated with active learning techniques such as hands-on coding exercises and Kahoot games. The effectiveness of these methods is evaluated through student assessments and surveys. Second, we have published our lecture video, slides, and findings so that other researchers and educators can reuse the courseware and materials to develop their own PQC learning modules. We employ statistical analysis (e.g., t-test and chi-square test) to compare the learning outcomes and students' feedback between the two learning methods in each course. Our findings suggest that student-led seminars significantly enhance learning outcomes, particularly for graduate students, where a notable improvement in comprehension and engagement is observed. Moving forward, we aim to scale these modules to diverse educational contexts and explore additional active learning and experiential learning strategies for teaching complex concepts of quantum information science.
Related papers
- Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments [0.37729165787434493]
This paper develops automated tools to predict when a student is having difficulty.
In a potential application, such models can aid instructors in detecting struggling students and providing targeted help.
arXiv Detail & Related papers (2024-08-16T04:57:54Z) - Unpacking Approaches to Learning and Teaching Machine Learning in K-12 Education: Transparency, Ethics, and Design Activities [0.0]
We identify three approaches to how learning and teaching machine learning could be conceptualized.
One of them, a data-driven approach, emphasizes providing young people with opportunities to create data sets, train, and test models.
A second approach, learning algorithm-driven, prioritizes learning about how the learning algorithms or engines behind how ML models work.
arXiv Detail & Related papers (2024-06-05T17:37:21Z) - Ruffle&Riley: Insights from Designing and Evaluating a Large Language Model-Based Conversational Tutoring System [21.139850269835858]
Conversational tutoring systems (CTSs) offer learning experiences through interactions based on natural language.
We discuss and evaluate a novel type of CTS that leverages recent advances in large language models (LLMs) in two ways.
The system enables AI-assisted content authoring by inducing an easily editable tutoring script automatically from a lesson text.
arXiv Detail & Related papers (2024-04-26T14:57:55Z) - Knowledge Tracing Challenge: Optimal Activity Sequencing for Students [0.9814642627359286]
Knowledge tracing is a method used in education to assess and track the acquisition of knowledge by individual learners.
We will present the results of the implementation of two Knowledge Tracing algorithms on a newly released dataset as part of the AAAI2023 Global Knowledge Tracing Challenge.
arXiv Detail & Related papers (2023-11-13T16:28:34Z) - AI Chatbots as Multi-Role Pedagogical Agents: Transforming Engagement in
CS Education [8.898863361318817]
We develop, implement, and evaluate a novel learning environment enriched with four distinct chatbots.
These roles cater to the three innate psychological needs of learners - competence, autonomy, and relatedness.
The system embraces an inquiry-based learning paradigm, encouraging students to ask questions, seek solutions, and explore their curiosities.
arXiv Detail & Related papers (2023-08-08T02:13:44Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
The exponential growth of question answering (QA) has made it an indispensable topic in any Natural Language Processing (NLP) course.
We introduce UKP-SQuARE as a platform for QA education.
Students can run, compare, and analyze various QA models from different perspectives.
arXiv Detail & Related papers (2023-05-31T11:29:04Z) - Quiz-based Knowledge Tracing [61.9152637457605]
Knowledge tracing aims to assess individuals' evolving knowledge states according to their learning interactions.
QKT achieves state-of-the-art performance compared to existing methods.
arXiv Detail & Related papers (2023-04-05T12:48:42Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
We test the capabilities of machine learning models in multimodal understanding of educational content.
Our dataset contains aligned slides and spoken language, for 180+ hours of video and 9000+ slides, with 10 lecturers from various subjects.
We introduce PolyViLT, a multimodal transformer trained with a multi-instance learning loss that is more effective than current approaches.
arXiv Detail & Related papers (2022-08-17T05:30:18Z) - Motivating Learners in Multi-Orchestrator Mobile Edge Learning: A
Stackelberg Game Approach [54.28419430315478]
Mobile Edge Learning enables distributed training of Machine Learning models over heterogeneous edge devices.
In MEL, the training performance deteriorates without the availability of sufficient training data or computing resources.
We propose an incentive mechanism, where we formulate the orchestrators-learners interactions as a 2-round Stackelberg game.
arXiv Detail & Related papers (2021-09-25T17:27:48Z) - Comparative Study of Learning Outcomes for Online Learning Platforms [47.5164159412965]
Personalization and active learning are key aspects to successful learning.
We run a comparative head-to-head study of learning outcomes for two popular online learning platforms.
arXiv Detail & Related papers (2021-04-15T20:40:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.