TrajGen: Generating Realistic and Diverse Trajectories with Reactive and
Feasible Agent Behaviors for Autonomous Driving
- URL: http://arxiv.org/abs/2203.16792v1
- Date: Thu, 31 Mar 2022 04:48:29 GMT
- Title: TrajGen: Generating Realistic and Diverse Trajectories with Reactive and
Feasible Agent Behaviors for Autonomous Driving
- Authors: Qichao Zhang, Yinfeng Gao, Yikang Zhang, Youtian Guo, Dawei Ding,
Yunpeng Wang, Peng Sun, Dongbin Zhao
- Abstract summary: Existing simulators rely on system-based behavior models for background vehicles, which cannot capture the complex interactive behaviors in real-world scenarios.
We propose TrajGen, a two-stage trajectory generation framework, which can capture more realistic behaviors directly from human demonstration.
In addition, we develop a data-driven simulator I-Sim that can be used to train reinforcement learning models in parallel based on naturalistic driving data.
- Score: 19.06020265777298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Realistic and diverse simulation scenarios with reactive and feasible agent
behaviors can be used for validation and verification of self-driving system
performance without relying on expensive and time-consuming real-world testing.
Existing simulators rely on heuristic-based behavior models for background
vehicles, which cannot capture the complex interactive behaviors in real-world
scenarios. To bridge the gap between simulation and the real world, we propose
TrajGen, a two-stage trajectory generation framework, which can capture more
realistic behaviors directly from human demonstration. In particular, TrajGen
consists of the multi-modal trajectory prediction stage and the reinforcement
learning based trajectory modification stage. In the first stage, we propose a
novel auxiliary RouteLoss for the trajectory prediction model to generate
multi-modal diverse trajectories in the drivable area. In the second stage,
reinforcement learning is used to track the predicted trajectories while
avoiding collisions, which can improve the feasibility of generated
trajectories. In addition, we develop a data-driven simulator I-Sim that can be
used to train reinforcement learning models in parallel based on naturalistic
driving data. The vehicle model in I-Sim can guarantee that the generated
trajectories by TrajGen satisfy vehicle kinematic constraints. Finally, we give
comprehensive metrics to evaluate generated trajectories for simulation
scenarios, which shows that TrajGen outperforms either trajectory prediction or
inverse reinforcement learning in terms of fidelity, reactivity, feasibility,
and diversity.
Related papers
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
We present DJINN - a diffusion based method of generating traffic scenarios.
Our approach jointly diffuses the trajectories of all agents, conditioned on a flexible set of state observations from the past, present, or future.
We show how DJINN flexibly enables direct test-time sampling from a variety of valuable conditional distributions.
arXiv Detail & Related papers (2023-09-21T22:10:20Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - A Deep Learning Framework for Generation and Analysis of Driving
Scenario Trajectories [2.908482270923597]
We propose a unified deep learning framework for the generation and analysis of driving scenario trajectories.
We experimentally investigate the performance of the proposed framework on real-world scenario trajectories obtained from in-field data collection.
arXiv Detail & Related papers (2020-07-28T23:33:05Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
This research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data.
A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data.
TrajGAIL is a generative adversarial imitation learning framework for the urban vehicle trajectory generation.
arXiv Detail & Related papers (2020-07-28T13:17:51Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.