論文の概要: A Cognitive Architecture for Machine Consciousness and Artificial Superintelligence: Thought Is Structured by the Iterative Updating of Working Memory
- arxiv url: http://arxiv.org/abs/2203.17255v7
- Date: Thu, 14 Nov 2024 01:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-17 16:50:45.664218
- Title: A Cognitive Architecture for Machine Consciousness and Artificial Superintelligence: Thought Is Structured by the Iterative Updating of Working Memory
- Title(参考訳): 機械意識と人工超知能の認知的アーキテクチャ:作業記憶の反復的更新によって思考が構造化される
- Authors: Jared Edward Reser,
- Abstract要約: 本稿では、コンピュータ内での人間的な思考プロセスのシミュレートのための分析フレームワークを提供する。
注意と記憶がどのように構造化され、更新され、思考ストリームへの連想的な追加を探すために利用されるかを記述する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This article provides an analytical framework for how to simulate human-like thought processes within a computer. It describes how attention and memory should be structured, updated, and utilized to search for associative additions to the stream of thought. The focus is on replicating the dynamics of the mammalian working memory system, which features two forms of persistent activity: sustained firing (preserving information on the order of seconds) and synaptic potentiation (preserving information from minutes to hours). The article uses a series of figures to systematically demonstrate how the iterative updating of these working memory stores provides functional organization to behavior, cognition, and awareness. In a machine learning implementation, these two memory stores should be updated continuously and in an iterative fashion. This means each state should preserve a proportion of the coactive representations from the state before it (where each representation is an ensemble of neural network nodes). This makes each state a revised iteration of the preceding state and causes successive configurations to overlap and blend with respect to the information they contain. Thus, the set of concepts in working memory will evolve gradually and incrementally over time. Transitions between states happen as persistent activity spreads activation energy throughout the hierarchical network, searching long-term memory for the most appropriate representation to be added to the global workspace. The result is a chain of associatively linked intermediate states capable of advancing toward a solution or goal. Iterative updating is conceptualized here as an information processing strategy, a model of working memory, a theory of consciousness, and an algorithm for designing and programming artificial intelligence (AI, AGI, and ASI).
- Abstract(参考訳): 本稿では、コンピュータ内での人間的な思考プロセスのシミュレートのための分析フレームワークを提供する。
注意と記憶がどのように構造化され、更新され、思考ストリームへの連想的な追加を探すために利用されるかを記述する。
哺乳類のワーキングメモリシステムのダイナミックスを複製することに焦点を当てており、持続的発射(秒の順序に関する情報を保存する)とシナプス増強(数分から数時間の情報を保存する)という2種類の持続的な活動が特徴である。
この記事では、これらのワーキングメモリストアの反復的更新が、行動、認知、意識に対する機能的組織をどのように提供しているかを体系的に示すために、一連の数字を使用します。
機械学習の実装では、これらの2つのメモリストアは継続的に反復的に更新されるべきである。
これは、各状態はその前の状態(各表現がニューラルネットワークノードのアンサンブルである)からコアクティブ表現の比率を保持する必要があることを意味する。
これにより、各状態は前状態の修正イテレーションとなり、連続した構成が、それらに含まれる情報に対して重複し、ブレンドされる。
したがって、ワーキングメモリにおける概念の集合は、時間とともに徐々に、徐々に進化していく。
状態間の遷移は、持続的な活動が階層ネットワーク全体に活性化エネルギーを広げ、グローバルなワークスペースに追加される最も適切な表現のために長期記憶を探索するときに起こる。
その結果は、解や目標に向かって進むことのできる、連想的に連結された中間状態の連鎖である。
反復的な更新は、情報処理戦略、ワーキングメモリのモデル、意識の理論、人工知能(AI、AI、AI、AI)の設計とプログラミングのためのアルゴリズムとして概念化されている。
関連論文リスト
- Hierarchical Working Memory and a New Magic Number [1.024113475677323]
本稿では,作業記憶のシナプス理論の枠組み内でチャンキングを行うための繰り返しニューラルネットワークモデルを提案する。
我々の研究は、認知に不可欠な脳内の情報のオンザフライ組織を理解するための、概念的で分析的な枠組みを提供する。
論文 参考訳(メタデータ) (2024-08-14T16:03:47Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - A Framework for Inference Inspired by Human Memory Mechanisms [9.408704431898279]
本稿では,知覚,記憶,推論の構成要素からなるPMIフレームワークを提案する。
メモリモジュールは、ワーキングメモリと長期メモリから構成され、後者は、広範囲で複雑なリレーショナル知識と経験を維持するために、高次構造を備えている。
我々は、bAbI-20kやSolt-of-CLEVRデータセットのような質問応答タスクにおいて、一般的なTransformerとCNNモデルを改善するためにPMIを適用します。
論文 参考訳(メタデータ) (2023-10-01T08:12:55Z) - AIGenC: An AI generalisation model via creativity [1.933681537640272]
本稿では,創造性に関する認知理論に触発された計算モデル(AIGenC)を紹介する。
人工エージェントが変換可能な表現を学習、使用、生成するために必要なコンポーネントを配置する。
本稿では, 人工エージェントの配当効率を向上するモデルの有効性について論じる。
論文 参考訳(メタデータ) (2022-05-19T17:43:31Z) - Pin the Memory: Learning to Generalize Semantic Segmentation [68.367763672095]
本稿ではメタラーニングフレームワークに基づくセマンティックセグメンテーションのための新しいメモリ誘導ドメイン一般化手法を提案する。
本手法は,セマンティッククラスの概念的知識を,ドメインを超えて一定であるカテゴリ記憶に抽象化する。
論文 参考訳(メタデータ) (2022-04-07T17:34:01Z) - Artificial Intelligence Software Structured to Simulate Human Working
Memory, Mental Imagery, and Mental Continuity [0.0]
本稿では,人間の作業記憶システムのシミュレーションを目的とした人工知能アーキテクチャを提案する。
大脳皮質の特別なモジュールをエミュレートするために設計された、いくつかの相互接続されたニューラルネットワークが特徴である。
ワーキングメモリに格納されたコンテンツが徐々に進化するにつれて、連続した状態は重なり合い、互いに連続している。
論文 参考訳(メタデータ) (2022-03-29T22:23:36Z) - Temporal Memory Relation Network for Workflow Recognition from Surgical
Video [53.20825496640025]
本研究では, 長期および多スケールの時間パターンを関連づける, エンドツーエンドの時間メモリ関係ネットワーク (TMNet) を提案する。
我々はこのアプローチを2つのベンチマーク手術ビデオデータセットで広範囲に検証した。
論文 参考訳(メタデータ) (2021-03-30T13:20:26Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
エピソディックメモリとセマンティックメモリは、人間のメモリモデルの重要なコンポーネントです。
我々は、エピソードメモリとセマンティックメモリのギャップを埋める新しい原理ベイズメモリ割り当てスキームを開発しました。
この割り当て方式がメモリ条件画像生成の性能を向上させることを実証する。
論文 参考訳(メタデータ) (2021-02-20T18:40:40Z) - Slow manifolds in recurrent networks encode working memory efficiently
and robustly [0.0]
ワーキングメモリ(working memory)は、潜在情報の保存と操作を短時間で行う認知機能である。
作業メモリのネットワークレベルメカニズムを調べるために,トップダウンモデリング手法を用いる。
論文 参考訳(メタデータ) (2021-01-08T18:47:02Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
我々はメタラーニングに変分セマンティックメモリを導入し、数ショットラーニングのための長期的知識を得る。
セマンティックメモリはスクラッチから成長し、経験したタスクから情報を吸収することで徐々に統合される。
アドレスコンテンツから潜在記憶変数の変動推論としてメモリリコールを定式化する。
論文 参考訳(メタデータ) (2020-10-20T15:05:26Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。