Synthesis of Stabilizing Recurrent Equilibrium Network Controllers
- URL: http://arxiv.org/abs/2204.00122v1
- Date: Thu, 31 Mar 2022 22:27:51 GMT
- Title: Synthesis of Stabilizing Recurrent Equilibrium Network Controllers
- Authors: Neelay Junnarkar, He Yin, Fangda Gu, Murat Arcak, Peter Seiler
- Abstract summary: We propose a parameterization of a nonlinear dynamic controller based on the recurrent equilibrium network, a generalization of the recurrent neural network.
We derive constraints on the parameterization under which the controller guarantees exponential stability of a partially observed dynamical system with sector-bounded nonlinearities.
We present a method to synthesize this controller using projected policy gradient methods to maximize a reward function with arbitrary structure.
- Score: 1.3799488979862031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a parameterization of a nonlinear dynamic controller based on the
recurrent equilibrium network, a generalization of the recurrent neural
network. We derive constraints on the parameterization under which the
controller guarantees exponential stability of a partially observed dynamical
system with sector-bounded nonlinearities. Finally, we present a method to
synthesize this controller using projected policy gradient methods to maximize
a reward function with arbitrary structure. The projection step involves the
solution of convex optimization problems. We demonstrate the proposed method
with simulated examples of controlling nonlinear plants, including plants
modeled with neural networks.
Related papers
- Neural Port-Hamiltonian Models for Nonlinear Distributed Control: An Unconstrained Parametrization Approach [0.0]
Neural Networks (NNs) can be leveraged to parametrize control policies that yield good performance.
NNs' sensitivity to small input changes poses a risk of destabilizing the closed-loop system.
To address these problems, we leverage the framework of port-Hamiltonian systems to design continuous-time distributed control policies.
The effectiveness of the proposed distributed controllers is demonstrated through consensus control of non-holonomic mobile robots.
arXiv Detail & Related papers (2024-11-15T10:44:29Z) - Synthesizing Neural Network Controllers with Closed-Loop Dissipativity Guarantees [0.6612847014373572]
A class of plants is considered that of linear time-invariant (LTI) systems interconnected with an uncertainty.
The uncertainty of the plant and the nonlinearities of the neural network are both described using integral quadratic constraints.
A convex condition is used in a projection-based training method to synthesize neural network controllers with dissipativity guarantees.
arXiv Detail & Related papers (2024-04-10T22:15:28Z) - Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
We present STT-MPC (Self-Tuning Tube-based Model Predictive Control), an online oracle that combines the certainty-equivalence principle and polytopic tubes.
We analyze the regret of the algorithm, when compared to an algorithm initially aware of the system dynamics.
arXiv Detail & Related papers (2023-10-07T15:07:10Z) - Neural System Level Synthesis: Learning over All Stabilizing Policies
for Nonlinear Systems [0.0]
We propose a Neural SLS (Neur-SLS) approach guaranteeing closed-loop stability during and after parameter optimization.
We exploit recent Deep Neural Network (DNN) models based on Recurrent Equilibrium Networks (RENs) to learn over a rich class of nonlinear stable operators.
arXiv Detail & Related papers (2022-03-22T15:22:31Z) - Learning over All Stabilizing Nonlinear Controllers for a
Partially-Observed Linear System [4.3012765978447565]
We propose a parameterization of nonlinear output feedback controllers for linear dynamical systems.
Our approach guarantees the closed-loop stability of partially observable linear dynamical systems without requiring any constraints to be satisfied.
arXiv Detail & Related papers (2021-12-08T10:43:47Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
We consider a control system of the form $dot x = sum_i=1lF_i(x)u_i$, with linear dependence in the controls.
We use the corresponding flow to approximate the action of a diffeomorphism on a compact ensemble of points.
arXiv Detail & Related papers (2021-10-24T08:57:46Z) - Linear systems with neural network nonlinearities: Improved stability
analysis via acausal Zames-Falb multipliers [0.0]
We analyze the stability of feedback interconnections of a linear time-invariant system with a neural network nonlinearity in discrete time.
Our approach provides a flexible and versatile framework for stability analysis of feedback interconnections with neural network nonlinearities.
arXiv Detail & Related papers (2021-03-31T14:21:03Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.