論文の概要: Federated Learning Framework Coping with Hierarchical Heterogeneity in
Cooperative ITS
- arxiv url: http://arxiv.org/abs/2204.00215v1
- Date: Fri, 1 Apr 2022 05:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 14:38:00.133152
- Title: Federated Learning Framework Coping with Hierarchical Heterogeneity in
Cooperative ITS
- Title(参考訳): 階層的不均一性を考慮した協調学習フレームワーク
- Authors: Rui Song, Liguo Zhou, Venkatnarayanan Lakshminarasimhan, Andreas
Festag, Alois Knoll
- Abstract要約: 階層的不均一性(H2-Fed)に対処する連合学習フレームワークを提案する。
このフレームワークは、ユーザーデータのプライバシに影響を与えることなく、車両ネットワーク内の接続された公共交通機関のデータを利用する。
- 参考スコア(独自算出の注目度): 10.087704332539161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce a federated learning framework coping with
Hierarchical Heterogeneity (H2-Fed), which can notably enhance the conventional
pre-trained deep learning model. The framework exploits data from connected
public traffic agents in vehicular networks without affecting user data
privacy. By coordinating existing traffic infrastructure, including roadside
units and road traffic clouds, the model parameters are efficiently
disseminated by vehicular communications and hierarchically aggregated.
Considering the individual heterogeneity of data distribution, computational
and communication capabilities across traffic agents and roadside units, we
employ a novel method that addresses the heterogeneity of different aggregation
layers of the framework architecture, i.e., aggregation in layers of roadside
units and cloud. The experiment results indicate that our method can well
balance the learning accuracy and stability according to the knowledge of
heterogeneity in current communication networks. Compared to other baseline
approaches, the evaluation on a Non-IID MNIST dataset shows that our framework
is more general and capable especially in application scenarios with low
communication quality. Even when 80% of the agents are timely disconnected, the
pre-trained deep learning model can still be forced to converge stably and its
accuracy can be enhanced from 68% to 93% after convergence.
- Abstract(参考訳): 本稿では,階層的不均一性(H2-Fed)に対処するフェデレーション学習フレームワークを提案する。
このフレームワークは、車載ネットワーク内の接続された公共交通機関からのデータを、ユーザのデータプライバシに影響を与えることなく活用する。
道路側ユニットや道路交通雲を含む既存の交通インフラをコーディネートすることにより、モデルパラメータを車両通信により効率よく分散し、階層的に集約する。
トラフィックエージェントと道路側ユニット間のデータ分散,計算および通信能力の個別の不均一性を考慮すると,フレームワークアーキテクチャの異なる集約層,すなわち道路側ユニットとクラウドの層間のアグリゲーションに対処する新しい手法を用いる。
実験の結果,本手法は,現在の通信ネットワークにおける不均一性の知識に応じて,学習精度と安定性のバランスをとることができることがわかった。
他のベースラインアプローチと比較して、非IID MNISTデータセットによる評価は、通信品質の低いアプリケーションシナリオにおいて、我々のフレームワークがより汎用的で能力が高いことを示している。
エージェントの80%が時間的に切断された場合でも、事前学習されたディープラーニングモデルは安定して収束させられ、収束後の68%から93%まで精度を高めることができる。
関連論文リスト
- Multi-Level Branched Regularization for Federated Learning [46.771459325434535]
本稿では,各局所モデルにおける複数の補助的分岐を,複数の異なるレベルで局所的および大域的ワークをグラフトすることで構築する,新しいアーキテクチャ正規化手法を提案する。
従来の手法に比べて精度と効率の点で顕著な性能向上を示す。
論文 参考訳(メタデータ) (2022-07-14T13:59:26Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Semi-asynchronous Hierarchical Federated Learning for Cooperative
Intelligent Transportation Systems [10.257042901204528]
コラボレーティブ・インテリジェント・トランスポート・システム(C-ITS)は、自動運転車や道路インフラの安全性、効率性、持続可能性、快適なサービスを提供する有望なネットワークである。
C-ITSのコンポーネントは通常大量のデータを生成するため、データサイエンスを探索することは困難である。
本稿では,C-ITSのためのSemi-a synchronous Federated Learning (SHFL) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-18T07:44:34Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
フェデレートラーニング(Federated Learning, FL)は、複数のノードが協調してディープラーニングモデルをトレーニングできる分散ラーニング方法論である。
本稿では,IoTヘテロジニアスシステムにおける階層FLの可能性について検討する。
複数のエッジノード上でのユーザ割り当てとリソース割り当てに最適化されたソリューションを提案する。
論文 参考訳(メタデータ) (2021-07-14T08:32:39Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。