論文の概要: Generalizing Differentially Private Decentralized Deep Learning with Multi-Agent Consensus
- arxiv url: http://arxiv.org/abs/2306.13892v2
- Date: Thu, 24 Oct 2024 22:49:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:08.539007
- Title: Generalizing Differentially Private Decentralized Deep Learning with Multi-Agent Consensus
- Title(参考訳): マルチエージェント・コンセンサスによる分別独立型深層学習の一般化
- Authors: Jasmine Bayrooti, Zhan Gao, Amanda Prorok,
- Abstract要約: 本稿では,分散ディープラーニングに差分プライバシーを組み込んだフレームワークを提案する。
本稿では,このフレームワークから派生したアルゴリズムの収束保証を証明し,その実用性を示す。
- 参考スコア(独自算出の注目度): 11.414398732656839
- License:
- Abstract: Cooperative decentralized learning relies on direct information exchange between communicating agents, each with access to locally available datasets. The goal is to agree on model parameters that are optimal over all data. However, sharing parameters with untrustworthy neighbors can incur privacy risks by leaking exploitable information. To enable trustworthy cooperative learning, we propose a framework that embeds differential privacy into decentralized deep learning and secures each agent's local dataset during and after cooperative training. We prove convergence guarantees for algorithms derived from this framework and demonstrate its practical utility when applied to subgradient and ADMM decentralized approaches, finding accuracies approaching the centralized baseline while ensuring individual data samples are resilient to inference attacks. Furthermore, we study the relationships between accuracy, privacy budget, and networks' graph properties on collaborative classification tasks, discovering a useful invariance to the communication graph structure beyond a threshold.
- Abstract(参考訳): 協調的な分散学習は、通信エージェント間の直接的な情報交換に依存し、それぞれがローカルに利用可能なデータセットにアクセスする。
目標は、すべてのデータに対して最適なモデルパラメータについて合意することである。
しかし、信頼できない隣人とパラメータを共有することは、悪用可能な情報を漏洩させることでプライバシー上のリスクを引き起こす可能性がある。
信頼性の高い協調学習を実現するために,分散ディープラーニングに差分プライバシを埋め込んだフレームワークを提案し,協調学習の前後で各エージェントのローカルデータセットを確保する。
我々は,この枠組みから導かれるアルゴリズムの収束保証を証明し,その実用性を,段階的およびADMM分散アプローチに適用し,個々のデータサンプルが推論攻撃に耐性があることを保証しながら,集中ベースラインに接近する精度を見出した。
さらに、協調分類タスクにおける精度、プライバシー予算、およびネットワークのグラフ特性の関係について検討し、しきい値を超える通信グラフ構造に有用な不変性を発見した。
関連論文リスト
- Personalized Federated Learning for Cross-view Geo-localization [49.40531019551957]
本稿では,フェデレート・ラーニング (FL) とクロスビュー・イメージ・ジオローカライゼーション (CVGL) 技術を組み合わせた方法論を提案する。
提案手法では, クライアントが粗い特徴抽出器のみを共有しながら, 局所環境に特有のきめ細かな特徴を保持する, 粗い特徴抽出器を実装している。
その結果,フェデレートCVGL法は,データプライバシを維持しつつ,集中的なトレーニングに近い性能を実現することができた。
論文 参考訳(メタデータ) (2024-11-07T13:25:52Z) - Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
信頼できない無線ネットワークの異なるノードに分散するベクトルの平均をプライベートに推定する問題を考える。
半分散的なセットアップでは、ノードは隣人と協力してローカルコンセンサスを計算し、中央サーバにリレーする。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2024-06-06T06:12:15Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
本研究は、断続接続を有するネットワーク上での分散平均推定(DME)の問題について考察する。
目標は、中央サーバの助けを借りて、分散ノード間でローカライズされたデータサンプルに関するグローバル統計を学習することだ。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2023-02-28T19:17:03Z) - Efficient Node Selection in Private Personalized Decentralized Learning [3.7784910521656654]
ノードのプライバシを保護するために,プライベート・パーソナライズド・デカライズド・ラーニング(PPDL)を提案する。
PPDLは、セキュアアグリゲーションと相関した対向多武装帯域最適化を組み合わせたものである。
PPDLは標準ベンチマークのモデル性能において従来の非プライベートな手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-30T10:01:18Z) - Privacy-preserving Decentralized Federated Learning over Time-varying
Communication Graph [5.649296652252663]
分散学習者が分散グローバルモデルアグリゲーションを実現するための最初のプライバシ保存コンセンサスに基づくアルゴリズムを提案する。
本論文は,提案アルゴリズムの正当性とプライバシ特性について述べる。
論文 参考訳(メタデータ) (2022-10-01T17:17:22Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Mitigating Leakage from Data Dependent Communications in Decentralized
Computing using Differential Privacy [1.911678487931003]
本稿では,ユーザ側分散計算における通信データ依存性を制御する汎用実行モデルを提案する。
私たちの公式なプライバシー保証は、シャッフルによるプライバシーの増幅に関する最近の結果を活用し、拡張します。
論文 参考訳(メタデータ) (2021-12-23T08:30:17Z) - Privacy-preserving Decentralized Aggregation for Federated Learning [3.9323226496740733]
フェデレーション学習は、複数のリージョンにまたがる分散データを学習するための有望なフレームワークである。
我々は,連合学習のためのプライバシ保存型分散集約プロトコルを開発した。
9 と 15 の分散サイトを持つベンチマークデータセットを用いて,画像分類と次単語予測のアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2020-12-13T23:45:42Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。