論文の概要: Face identification by means of a neural net classifier
- arxiv url: http://arxiv.org/abs/2204.00305v1
- Date: Fri, 1 Apr 2022 09:30:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 15:24:02.853922
- Title: Face identification by means of a neural net classifier
- Title(参考訳): ニューラルネット分類器による顔識別
- Authors: Virginia Espinosa-Duro, Marcos Faundez-Zanuy
- Abstract要約: 本稿では,固有顔理論とニューラルネットを組み合わせた新しい顔識別法を提案する。
認識率は87%を超え、トルコとペントランドの古典的な手法は75.5%に達している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes a novel face identification method that combines the
eigenfaces theory with the Neural Nets. We use the eigenfaces methodology in
order to reduce the dimensionality of the input image, and a neural net
classifier that performs the identification process. The method presented
recognizes faces in the presence of variations in facial expression, facial
details and lighting conditions. A recognition rate of more than 87% has been
achieved, while the classical method of Turk and Pentland achieves a 75.5%.
- Abstract(参考訳): 本稿では,固有面理論とニューラルネットを組み合わせた新しい顔識別法について述べる。
固有顔法を用いて入力画像の寸法を低減し,その識別処理を行うニューラルネットワーク分類器を提案する。
提案手法は,表情,表情の細部,照明条件の変動を考慮した顔認識を行う。
認識率は87%を超え、トルコとペントランドの古典的な手法は75.5%に達している。
関連論文リスト
- A survey on facial image deblurring [3.6775758132528877]
顔画像がぼやけていると、顔認識などのハイレベルな視覚タスクに大きな影響を与えます。
本稿では,最近発表された顔画像の難読化手法について概説し,その大部分はディープラーニングに基づくものである。
本稿では,データセットとメトリクスにおける古典的手法の性能を示すとともに,モデルに基づく手法と学習に基づく手法の違いについて,簡単な議論を行う。
論文 参考訳(メタデータ) (2023-02-10T02:24:56Z) - Towards Intrinsic Common Discriminative Features Learning for Face
Forgery Detection using Adversarial Learning [59.548960057358435]
本稿では, 対人学習を利用して, 異なる偽造法と顔の同一性による負の効果を除去する手法を提案する。
我々の顔偽造検出モデルは、偽造法や顔の同一性の影響を排除し、共通の識別的特徴を抽出することを学ぶ。
論文 参考訳(メタデータ) (2022-07-08T09:23:59Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - Age Gap Reducer-GAN for Recognizing Age-Separated Faces [72.26969872180841]
本稿では,年齢変化に伴う顔と時間変化をマッチングする新しいアルゴリズムを提案する。
提案手法は,顔の年齢推定と年齢別顔の検証を組み合わせた統合フレームワークである。
論文 参考訳(メタデータ) (2020-11-11T16:43:32Z) - FusiformNet: Extracting Discriminative Facial Features on Different
Levels [0.0]
顔の特徴を識別する特徴抽出フレームワークFusiformNetを提案する。
FusiformNetは、外部データ、画像拡張、正規化、特別な損失関数をラベル付けせずに96.67%の最先端の精度を達成した。
一般的な特徴と局所的な特徴の両方を抽出できる能力を考えると、FusiformNetの機能は顔認識に限らず、他のDNNベースのタスクにも拡張される可能性がある。
論文 参考訳(メタデータ) (2020-11-01T18:00:59Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Explainable Face Recognition [4.358626952482686]
本稿では,説明可能な顔認識のための総合的なベンチマークとベースライン評価を行う。
95人の被験者からなる3648個の三つ子(プローブ,配偶子,非配偶子)のキュレートしたセットである「インペイントゲーム」と呼ばれる新しい評価プロトコルを定義した。
探索画像内のどの領域が交配画像と一致しているかを最もよく説明するネットワークアテンションマップを生成するための説明可能なフェイスマーカを課題とする。
論文 参考訳(メタデータ) (2020-08-03T14:47:51Z) - Multi-Metric Evaluation of Thermal-to-Visual Face Recognition [3.0255457622022486]
我々は、機械学習を用いて、赤外線画像から視覚スペクトル面を合成する異種・横断的な顔認識の課題に対処することを目的とする。
我々は、顔画像合成にGAN(Geneversarative Adrial Networks)を使用する能力について検討し、これらの画像の性能を事前学習した畳み込みニューラルネットワーク(CNN)を用いて検討する。
CNNを用いて抽出した特徴を顔認証と検証に応用する。
論文 参考訳(メタデータ) (2020-07-22T10:18:34Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z) - Exploiting Semantics for Face Image Deblurring [121.44928934662063]
本稿では,深層畳み込みニューラルネットワークによる意味的手がかりを利用して,効果的かつ効率的な顔分解アルゴリズムを提案する。
顔のセマンティックラベルを入力先として組み込んで,顔の局所構造を正規化するための適応的構造損失を提案する。
提案手法は、より正確な顔の特徴と細部を持つシャープ画像を復元する。
論文 参考訳(メタデータ) (2020-01-19T13:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。