論文の概要: Nowruz at SemEval-2022 Task 7: Tackling Cloze Tests with Transformers
and Ordinal Regression
- arxiv url: http://arxiv.org/abs/2204.00556v1
- Date: Fri, 1 Apr 2022 16:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 15:55:48.413324
- Title: Nowruz at SemEval-2022 Task 7: Tackling Cloze Tests with Transformers
and Ordinal Regression
- Title(参考訳): Nowruz at SemEval-2022 Task 7: Transformer と Ordinal Regression でクローズテストに取り組む
- Authors: Mohammadmahdi Nouriborji, Omid Rohanian, David Clifton
- Abstract要約: 本稿では,チームがSemEval 2022 Task 7に参加したシステムについて概説する。
- 参考スコア(独自算出の注目度): 1.9078991171384017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper outlines the system using which team Nowruz participated in
SemEval 2022 Task 7 Identifying Plausible Clarifications of Implicit and
Underspecified Phrases for both subtasks A and B. Using a pre-trained
transformer as a backbone, the model targeted the task of multi-task
classification and ranking in the context of finding the best fillers for a
cloze task related to instructional texts on the website Wikihow.
The system employed a combination of two ordinal regression components to
tackle this task in a multi-task learning scenario. According to the official
leaderboard of the shared task, this system was ranked 5th in the ranking and
7th in the classification subtasks out of 21 participating teams. With
additional experiments, the models have since been further optimised.
- Abstract(参考訳): 本稿では,前訓練されたトランスフォーマーをバックボーンとして,webサイトwikihow上で,クローズタスクの最良のフィラーを見つけるためのマルチタスク分類とランク付けのタスクを目標とした。
このシステムは2つの順序回帰成分を組み合わせて、マルチタスク学習シナリオでこのタスクに取り組みました。
共有タスクの公式リーダーボードによると、このシステムは21チーム中5位、サブタスク分類では7位にランクされた。
さらなる実験により、モデルはさらに最適化された。
関連論文リスト
- SemEval-2024 Shared Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes [48.83290963506378]
本稿では,幻覚検出に焦点をあてた共有タスクであるSHROOMの結果について述べる。
このアプローチをどのように取り組んだかについて、いくつかの重要なトレンドを観察します。
チームの大多数が提案したベースラインシステムより優れていますが、トップスコアシステムのパフォーマンスは依然として、より困難なアイテムのランダムなハンドリングと一致しています。
論文 参考訳(メタデータ) (2024-03-12T15:06:22Z) - Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space --
Transformer Ensemble Models Tackling Deception and Persuasion [0.0]
本稿では,各課題のタスク1-Aとタスク2-Aのアプローチについて述べる。
タスクは、与えられたバイナリ分類問題に対して、ツイートとニュース記事のマルチジャンルスニペットを使用する。
タスク1-A(8位)では0.742、タスク2-A(7位)では0.901のマイクロF1スコアを達成した。
論文 参考訳(メタデータ) (2023-11-30T17:26:57Z) - X-PuDu at SemEval-2022 Task 7: A Replaced Token Detection Task
Pre-trained Model with Pattern-aware Ensembling for Identifying Plausible
Clarifications [13.945286351253717]
本稿では,SemEval 2022 Task 7: Identifying Plausible Clarifications of Implicit and Underspecificified Phrases in instructional textsについて述べる。
SubTask-A: Multi-class Classification と SubTask-B: Ranking のために、置換トークン検出事前訓練モデルを使用する。
本システムでは,SubTask-AとSubTask-Bのそれぞれ2.7と2.2%の差で,68.90%の精度スコアと0.8070のスピアマンのランク相関スコアが2位を突破した。
論文 参考訳(メタデータ) (2022-11-27T05:46:46Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - IISERB Brains at SemEval 2022 Task 6: A Deep-learning Framework to
Identify Intended Sarcasm in English [6.46316101972863]
本稿では,SemEval 2022 Task 6 コンペティションに対して,我々のチーム "IISERBBrains" が提出したシステムアーキテクチャとモデルについて述べる。
また,オーガナイザが評価データのゴールドラベルを発行した後,実験によって得られた他のモデルや結果についても報告する。
論文 参考訳(メタデータ) (2022-03-04T11:23:54Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
モジュラー設計は、ニューラルネットワークが様々な知識の面をアンタングルして再結合し、新しいタスクにより系統的に一般化することを奨励する。
この研究では、各タスクは(潜在的に小さな)インベントリから潜在的な離散スキルのサブセットと関連付けられていると仮定する。
ネットワークのモジュラー設計により、強化学習におけるサンプル効率が著しく向上し、教師あり学習における数ショットの一般化が図られる。
論文 参考訳(メタデータ) (2022-02-28T16:07:19Z) - MagicPai at SemEval-2021 Task 7: Method for Detecting and Rating Humor
Based on Multi-Task Adversarial Training [4.691435917434472]
本稿では,MagicPaiによるSemEval 2021 Task 7, HaHackathon: Detecting and Rating Humor and Offenseのシステムについて述べる。
この課題は、テキストがユーモラスか、いかにユーモラスかを検出することである。
主に、逆例に基づくマルチタスク学習モデルであるソリューションを紹介します。
論文 参考訳(メタデータ) (2021-04-21T03:23:02Z) - ISCAS at SemEval-2020 Task 5: Pre-trained Transformers for
Counterfactual Statement Modeling [48.3669727720486]
ISCASはSemEval 2020 Task 5の2つのサブタスクに参加した。
本稿では,事前学習したトランスをベースとしたシステムについて述べる。
論文 参考訳(メタデータ) (2020-09-17T09:28:07Z) - Solomon at SemEval-2020 Task 11: Ensemble Architecture for Fine-Tuned
Propaganda Detection in News Articles [0.3232625980782302]
本稿では,第11節「新聞記事におけるプロパガンダ技術の検出」に参画したシステム(ソロモン)の詳細と成果について述べる。
プロパガンダデータセットの微調整にRoBERTaベースのトランスフォーマーアーキテクチャを使用した。
他の参加システムと比較して、私たちの応募はリーダーボードで4位です。
論文 参考訳(メタデータ) (2020-09-16T05:00:40Z) - Adaptive Task Sampling for Meta-Learning [79.61146834134459]
数ショットの分類のためのメタラーニングの鍵となるアイデアは、テスト時に直面した数ショットの状況を模倣することである。
一般化性能を向上させるための適応型タスクサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T03:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。