論文の概要: MagicPai at SemEval-2021 Task 7: Method for Detecting and Rating Humor
Based on Multi-Task Adversarial Training
- arxiv url: http://arxiv.org/abs/2104.10336v1
- Date: Wed, 21 Apr 2021 03:23:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-22 14:37:36.964221
- Title: MagicPai at SemEval-2021 Task 7: Method for Detecting and Rating Humor
Based on Multi-Task Adversarial Training
- Title(参考訳): magicpai at semeval-2021 task 7: multi-task adversarial training に基づくユーモアの検出と評価方法
- Authors: Jian Ma, Shuyi Xie, Haiqin Yang, Lianxin Jiang, Mengyuan Zhou, Xiaoyi
Ruan, Yang Mo
- Abstract要約: 本稿では,MagicPaiによるSemEval 2021 Task 7, HaHackathon: Detecting and Rating Humor and Offenseのシステムについて述べる。
この課題は、テキストがユーモラスか、いかにユーモラスかを検出することである。
主に、逆例に基づくマルチタスク学習モデルであるソリューションを紹介します。
- 参考スコア(独自算出の注目度): 4.691435917434472
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper describes MagicPai's system for SemEval 2021 Task 7, HaHackathon:
Detecting and Rating Humor and Offense. This task aims to detect whether the
text is humorous and how humorous it is. There are four subtasks in the
competition. In this paper, we mainly present our solution, a multi-task
learning model based on adversarial examples, for task 1a and 1b. More
specifically, we first vectorize the cleaned dataset and add the perturbation
to obtain more robust embedding representations. We then correct the loss via
the confidence level. Finally, we perform interactive joint learning on
multiple tasks to capture the relationship between whether the text is humorous
and how humorous it is. The final result shows the effectiveness of our system.
- Abstract(参考訳): 本稿では,magicpai の semeval 2021 task 7, hahackathon: detection and rating humor and offense のシステムについて述べる。
この課題は、テキストがユーモラスか、いかにユーモラスかを検出することである。
競技には4つのサブタスクがあります。
本稿では主に,タスク1a,1bに対して,敵の例に基づくマルチタスク学習モデルを提案する。
より具体的には、まずクリーンデータセットをベクター化し、摂動を追加してより堅牢な埋め込み表現を得る。
そして、信頼度によって損失を補正します。
最後に,テキストのユーモラスさとユーモラスさの関係を捉えるために,複数のタスクで対話型共同学習を行う。
最終結果は,システムの有効性を示す。
関連論文リスト
- Reverse Probing: Evaluating Knowledge Transfer via Finetuned Task Embeddings for Coreference Resolution [23.375053899418504]
複雑なソースタスクから凍結表現を探索する代わりに、複数の単純なソースタスクから1つのターゲットタスクへの埋め込みの有効性について検討する。
この結果,タスクの埋め込みは,意味的類似性タスクが最も有益であることが示され,コア参照の解決に大いに有用であることが判明した。
論文 参考訳(メタデータ) (2025-01-31T17:12:53Z) - Task-Driven Exploration: Decoupling and Inter-Task Feedback for Joint Moment Retrieval and Highlight Detection [7.864892339833315]
本稿では,共同モーメント検索とハイライト検出のためのタスク駆動型トップダウンフレームワークを提案する。
このフレームワークはタスク固有の共通表現をキャプチャするタスク分離ユニットを導入している。
QVHighlights、TVSum、Charades-STAデータセットに関する総合的な実験と詳細なアブレーション研究は、提案フレームワークの有効性と柔軟性を裏付けるものである。
論文 参考訳(メタデータ) (2024-04-14T14:06:42Z) - Mavericks at ArAIEval Shared Task: Towards a Safer Digital Space --
Transformer Ensemble Models Tackling Deception and Persuasion [0.0]
本稿では,各課題のタスク1-Aとタスク2-Aのアプローチについて述べる。
タスクは、与えられたバイナリ分類問題に対して、ツイートとニュース記事のマルチジャンルスニペットを使用する。
タスク1-A(8位)では0.742、タスク2-A(7位)では0.901のマイクロF1スコアを達成した。
論文 参考訳(メタデータ) (2023-11-30T17:26:57Z) - Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
推定タスクの不確実性の定量化は、オンラインやアクティブな学習など、多くの下流アプリケーションにとって重要な課題である。
タスク間の類似性やタスクの特徴を学習者に提供できない場合、課題設定において新しいマルチタスク信頼区間を提供する。
本稿では,このパラメータを事前に知らないまま,このような改善された後悔を実現する新しいオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-03T13:08:09Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
既存の研究では、大規模教師付きタスクによるマルチタスク学習がタスク間の負の効果に悩まされていることが示されている。
タスク間の関係を探索するために,タスクプレフィックスガイド付きマルチタスク事前学習フレームワークを提案する。
我々のモデルは、幅広いタスクの強力な基盤バックボーンとして機能するだけでなく、タスク関係を分析するための探索ツールとしても実現可能である。
論文 参考訳(メタデータ) (2022-10-12T15:02:04Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene
Text Recognition [60.36540008537054]
本研究では,従来のテキスト認識における文字数カウントという暗黙のタスクを,追加的な注釈コストなしで発掘する。
両タスクの機能を適切に活用するために,2分岐の相反的特徴学習フレームワークを設計する。
7つのベンチマークの実験では、テキスト認識と新しい文字カウントタスクの両方において提案手法の利点が示されている。
論文 参考訳(メタデータ) (2021-05-13T12:27:35Z) - UPB at SemEval-2021 Task 7: Adversarial Multi-Task Learning for
Detecting and Rating Humor and Offense [0.6404122934568858]
本稿では, 敵のマルチタスクネットワークであるAMTL-Humorを用いて, ユーモアや攻撃的テキストの検出と評価を行う。
私達の最もよいモデルはすべてのテストされた構成のアンサンブルから成り、95.66% F1スコアおよびタスク1aのための94.70%の正確さを達成します。
論文 参考訳(メタデータ) (2021-04-13T09:59:05Z) - Humor@IITK at SemEval-2021 Task 7: Large Language Models for Quantifying
Humor and Offensiveness [2.251416625953577]
本稿では,大きなニューラルモデルとそのアンサンブルがユーモア/オフィス検出と評価に関連する複雑さを捕捉できるかどうかを検討する。
SemEval-2021 Task 7: HaHackathonによる実験により,このようなモデルを用いて合理的なユーモアと犯罪検知システムを開発できることが判明した。
論文 参考訳(メタデータ) (2021-04-02T08:22:02Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。