論文の概要: Fast and Automatic Object Registration for Human-Robot Collaboration in
Industrial Manufacturing
- arxiv url: http://arxiv.org/abs/2204.00597v1
- Date: Fri, 1 Apr 2022 17:38:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-04 15:34:29.711633
- Title: Fast and Automatic Object Registration for Human-Robot Collaboration in
Industrial Manufacturing
- Title(参考訳): 産業生産におけるロボット協調のための高速自動物体登録
- Authors: Manuela Gei{\ss}, Martin Baresch, Georgios Chasparis, Edwin Schweiger,
Nico Teringl, Michael Zwick
- Abstract要約: 本稿では,ロボット協調作業における物体検出モデルの高速再学習のためのエンドツーエンドフレームワークを提案する。
我々のFaster R-CNNベースのセットアップは、自動画像生成とラベル付けのワークフロー全体をカバーしています。
オープンワールド認識の課題に対処するために, 新たな損失, 対物圏内損失を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an end-to-end framework for fast retraining of object detection
models in human-robot-collaboration. Our Faster R-CNN based setup covers the
whole workflow of automatic image generation and labeling, model retraining
on-site as well as inference on a FPGA edge device. The intervention of a human
operator reduces to providing the new object together with its label and
starting the training process. Moreover, we present a new loss, the
intraspread-objectosphere loss, to tackle the problem of open world
recognition. Though it fails to completely solve the problem, it significantly
reduces the number of false positive detections of unknown objects.
- Abstract(参考訳): ロボット協調作業における物体検出モデルの高速再学習のためのエンドツーエンドフレームワークを提案する。
我々のFaster R-CNNベースのセットアップは、自動画像生成とラベリング、現場でのモデル再トレーニング、FPGAエッジデバイスでの推論のワークフロー全体をカバーしています。
人間のオペレータの介入は、新しいオブジェクトをラベルと共に提供し、トレーニングプロセスを開始することを減らす。
さらに,オープンワールド認識の問題に取り組むために,新たな損失であるintraspread-objectosphere lossを提案する。
完全な解決には至らなかったが、未知の物体の偽陽性検出の回数を大幅に減少させる。
関連論文リスト
- RoboPEPP: Vision-Based Robot Pose and Joint Angle Estimation through Embedding Predictive Pre-Training [27.63332596592781]
関節角度の不明な関節ロボットの視覚に基づくポーズ推定は、協調ロボット工学や人間とロボットのインタラクションタスクに応用できる。
現在のフレームワークでは、ニューラルネットワークエンコーダを使用して、画像の特徴と下流層を抽出し、関節角とロボットのポーズを予測する。
本稿では,ロボットの物理モデルに関する情報を,マスクを用いた自己教師型埋め込み予測アーキテクチャを用いてエンコーダに融合させる手法であるRoboPEPPを紹介する。
論文 参考訳(メタデータ) (2024-11-26T18:26:17Z) - NeuPAN: Direct Point Robot Navigation with End-to-End Model-based Learning [67.53972459080437]
本稿では,リアルタイム,高精度,ロボットに依存しない,環境に適応しないロボットナビゲーションソリューションであるNeuPANについて述べる。
NeuPANは密結合の知覚移動フレームワークを活用し、既存のアプローチと比較して2つの重要なイノベーションを持っている。
我々は,車載ロボット,車輪脚ロボット,乗用車において,実環境と実環境の両方でNeuPANを評価した。
論文 参考訳(メタデータ) (2024-03-11T15:44:38Z) - Incremental Object-Based Novelty Detection with Feedback Loop [18.453867533201308]
オブジェクトベースのノベルティ検出(ND)は、トレーニング中に見られるクラスに属さない未知のオブジェクトを特定することを目的としている。
従来のNDアプローチでは、事前訓練されたオブジェクト検出出力の1回のオフラインポスト処理に重点を置いていた。
本研究では,予測された出力に対して人間のフィードバックを要求できることを前提として,オブジェクトベースのNDのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-15T14:46:20Z) - Rotating Features for Object Discovery [74.1465486264609]
本稿では,複雑な特徴を高次元に一般化した回転特徴と,分散表現からオブジェクトを抽出する新たな評価手法を提案する。
これらの進歩により、分散オブジェクト中心の表現を単純な玩具から現実世界のデータに拡張することが可能になります。
論文 参考訳(メタデータ) (2023-06-01T12:16:26Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Automatic Bounding Box Annotation with Small Training Data Sets for
Industrial Manufacturing [0.0]
本稿では,自動バウンディングボックスアノテーションのタスクに対して,最先端のオブジェクト検出手法を適用する方法について論じる。
未知の物体を、少量のトレーニングデータのみを用いて、複雑だが均質な背景から区別するように訓練できることが示される。
論文 参考訳(メタデータ) (2022-06-01T07:32:32Z) - IFOR: Iterative Flow Minimization for Robotic Object Rearrangement [92.97142696891727]
IFOR(Iterative Flow Minimization for Robotic Object Rearrangement)は、未知物体の物体再構成問題に対するエンドツーエンドの手法である。
本手法は,合成データのみを訓練しながら,散在するシーンや実世界に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-02-01T20:03:56Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
近年,GANに基づく半教師付きジェネレーティブ・アドバイザリアル・ネットワーク(GAN)手法が,異常検出タスクで人気を集めている。
遅延特徴空間でトレーニングデータの基盤となる構造を捕捉する新しい対角デュアルオートエンコーダネットワークを提案する。
実験の結果,MNISTおよびCIFAR10データセットおよびGTSRB停止信号データセットの最先端結果が得られた。
論文 参考訳(メタデータ) (2020-02-05T02:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。