論文の概要: Explainable and Interpretable Diabetic Retinopathy Classification Based
on Neural-Symbolic Learning
- arxiv url: http://arxiv.org/abs/2204.00624v1
- Date: Fri, 1 Apr 2022 00:54:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-08 07:35:34.057639
- Title: Explainable and Interpretable Diabetic Retinopathy Classification Based
on Neural-Symbolic Learning
- Title(参考訳): ニューラルシンボリック学習に基づく糖尿病網膜症分類の解説と解釈
- Authors: Se-In Jang, Michael J.A. Girard and Alexandre H. Thiery
- Abstract要約: 本稿では,ニューラルシンボリック学習に基づく説明可能な,解釈可能な糖尿病網膜症(ExplainDR)分類モデルを提案する。
本稿では,眼の健康状態に関連する糖尿病網膜症の特徴を分類し,説明可能性を実現するためのヒト可読的シンボル表現を提案する。
- 参考スコア(独自算出の注目度): 71.76441043692984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an explainable and interpretable diabetic
retinopathy (ExplainDR) classification model based on neural-symbolic learning.
To gain explainability, a highlevel symbolic representation should be
considered in decision making. Specifically, we introduce a human-readable
symbolic representation, which follows a taxonomy style of diabetic retinopathy
characteristics related to eye health conditions to achieve explainability. We
then include humanreadable features obtained from the symbolic representation
in the disease prediction. Experimental results on a diabetic retinopathy
classification dataset show that our proposed ExplainDR method exhibits
promising performance when compared to that from state-of-the-art methods
applied to the IDRiD dataset, while also providing interpretability and
explainability.
- Abstract(参考訳): 本稿では,ニューラルシンボリック学習に基づく説明可能な,解釈可能な糖尿病網膜症(ExplainDR)分類モデルを提案する。
説明可能性を得るためには、意思決定において高水準の象徴表現を考慮すべきである。
具体的には、眼の健康状態に関連する糖尿病網膜症の特徴を分類し、説明可能性を実現するヒト可読的シンボル表現を導入する。
次に、疾患予測におけるシンボル表現から得られる人間可読性特徴を含める。
糖尿病網膜症分類データセットを用いた実験結果から,本手法はIDRiDデータセットに適用した最先端手法と比較して有望な性能を示すとともに,解釈性や説明性ももたらした。
関連論文リスト
- Neuro-Symbolic AI: Explainability, Challenges, and Future Trends [26.656105779121308]
本稿では,2013年度の191研究におけるモデル設計と行動の両面を考慮した説明可能性の分類を提案する。
我々は,表現の相違をブリッジする形態が可読かどうかを考慮し,これらを5つのカテゴリに分類する。
我々は、統一表現、モデル説明可能性の向上、倫理的考察、社会的影響の3つの側面で将来の研究を提案する。
論文 参考訳(メタデータ) (2024-11-07T02:54:35Z) - Looking into Concept Explanation Methods for Diabetic Retinopathy Classification [0.0]
基礎画像を用いて糖尿病網膜症に対する糖尿病患者全員のスクリーニングは不可能である。
深層学習は、眼底画像の自動解析とグルーピングの素晴らしい結果を示している。
説明可能な人工知能手法は、ディープニューラルネットワークを説明するために応用できる。
論文 参考訳(メタデータ) (2024-10-04T07:01:37Z) - Semi-Supervised Graph Representation Learning with Human-centric
Explanation for Predicting Fatty Liver Disease [2.992602379681373]
本研究では,半教師付き学習フレームワークにおけるグラフ表現学習の可能性について検討する。
本手法は,健康診断データからリスクパターンを識別する対象類似性グラフを構築する。
論文 参考訳(メタデータ) (2024-03-05T08:59:45Z) - Signature Activation: A Sparse Signal View for Holistic Saliency [18.699129959911485]
本稿では,CNN出力の全体的およびクラス非依存的な説明を生成するサリエンシ手法であるSignature Activationを紹介する。
本手法は, 血管造影などの特定の医療画像が, 前景や背景の鮮明な物体を持っているという事実を生かしている。
冠状血管造影検査における病変検出への有効性を評価することにより,臨床現場での本法の有用性を示す。
論文 参考訳(メタデータ) (2023-09-20T16:17:26Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
人間は簡潔で直感的な説明を使って予測を説明することができる。
特徴表現がテキストである視覚モデルでは,画像ネットイメージを効果的に分類できることを示す。
論文 参考訳(メタデータ) (2023-06-29T00:24:42Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Explainable Diabetic Retinopathy Detection and Retinal Image Generation [16.140110713539023]
本稿では,医学診断における深層学習応用の解釈可能性を活用することを提案する。
糖尿病性網膜症検知器が決定に依存するニューロン活性化パターンを決定・分離することにより,病理的説明のために単離されたニューロン活性化と病変の直接的関係を示す。
ディスクリプタで符号化された症状を可視化するために,医学的に可視な網膜像を合成する新しいネットワークPatho-GANを提案する。
論文 参考訳(メタデータ) (2021-07-01T08:30:04Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。