論文の概要: Dimensionless machine learning: Imposing exact units equivariance
- arxiv url: http://arxiv.org/abs/2204.00887v1
- Date: Sat, 2 Apr 2022 15:46:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 14:13:21.451183
- Title: Dimensionless machine learning: Imposing exact units equivariance
- Title(参考訳): ディメンジョンレス機械学習:正確な単位等分散を課す
- Authors: Soledad Villar and Weichi Yao and David W. Hogg and Ben Blum-Smith and
Bianca Dumitrascu
- Abstract要約: 単位等価な機械学習のための2段階の学習手順を提供する。
まず、次元解析による古典的な結果を用いて、その入力の無次元バージョンを構築する。
そして、無次元空間で推論を行う。
- 参考スコア(独自算出の注目度): 7.9926585627926166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Units equivariance is the exact symmetry that follows from the requirement
that relationships among measured quantities of physics relevance must obey
self-consistent dimensional scalings. Here, we employ dimensional analysis and
ideas from equivariant machine learning to provide a two stage learning
procedure for units-equivariant machine learning. For a given learning task, we
first construct a dimensionless version of its inputs using classic results
from dimensional analysis, and then perform inference in the dimensionless
space. Our approach can be used to impose units equivariance across a broad
range of machine learning methods which are equivariant to rotations and other
groups. We discuss the in-sample and out-of-sample prediction accuracy gains
one can obtain in contexts like symbolic regression and emulation, where
symmetry is important. We illustrate our approach with simple numerical
examples involving dynamical systems in physics and ecology.
- Abstract(参考訳): 単位同値(英: Units equivariance)は、測定された物理量間の関係が自己整合次元スケーリングに従う必要があるという要求から従う正確な対称性である。
そこで,同変機械学習の次元解析とアイデアを用いて,単位同変機械学習の2段階学習手法を提案する。
与えられた学習タスクに対して、まず、次元解析の古典的な結果を用いて、その入力の次元のないバージョンを構築し、次に次元のない空間で推論を行う。
このアプローチは、回転や他の群に同変する幅広い機械学習手法にまたがって単位等分散を課すのに使うことができる。
対称性が重要である記号回帰やエミュレーションのような文脈で得られるサンプル内およびサンプル外予測精度について論じる。
物理学および生態学における力学系を含む簡単な数値例を用いて,このアプローチを説明する。
関連論文リスト
- Symmetry From Scratch: Group Equivariance as a Supervised Learning Task [1.8570740863168362]
対称性を持つ機械学習データセットにおいて、対称性の破れとの後方互換性のパラダイムは、同変のアーキテクチャ制約を緩和することであった。
機械学習モデルにおける同値化を誘導する手法である対称性閉包を導入する。
論文 参考訳(メタデータ) (2024-10-05T00:44:09Z) - Morphological Symmetries in Robotics [45.32599550966704]
形態的対称性は ロボットの形態の固有の特性です
これらの対称性は、ロボットの状態空間とセンサーの測定にまで拡張される。
データ駆動型手法では, 機械学習モデルのサンプル効率と一般化を, モルフォロジー対称性により向上させることができることを示す。
解析手法の文脈では、ロボットの力学を低次元独立力学の重ね合わせに分解するために抽象調和解析を用いる。
論文 参考訳(メタデータ) (2024-02-23T17:21:21Z) - A Unified Framework to Enforce, Discover, and Promote Symmetry in Machine Learning [5.1105250336911405]
機械学習モデルに対称性を組み込むための統一理論および方法論の枠組みを提供する。
対称性の強制と発見は、リー微分の双線型構造に対して双対である線形代数的タスクであることを示す。
本稿では、リー微分と核ノルム緩和に基づく凸正規化関数のクラスを導入することで対称性を促進する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-11-01T01:19:54Z) - In-Context Convergence of Transformers [63.04956160537308]
勾配降下法により訓練したソフトマックスアテンションを有する一層変圧器の学習力学について検討した。
不均衡な特徴を持つデータに対しては、学習力学が段階的に収束する過程をとることを示す。
論文 参考訳(メタデータ) (2023-10-08T17:55:33Z) - EqMotion: Equivariant Multi-agent Motion Prediction with Invariant
Interaction Reasoning [83.11657818251447]
不変相互作用推論を用いた効率的な同変運動予測モデルであるEqMotionを提案する。
提案モデルに対して,粒子動力学,分子動力学,人体骨格運動予測,歩行者軌道予測の4つの異なるシナリオで実験を行った。
提案手法は4つのタスクすべてに対して最先端の予測性能を実現し,24.0/30.1/8.6/9.2%改善した。
論文 参考訳(メタデータ) (2023-03-20T05:23:46Z) - Sample Efficient Dynamics Learning for Symmetrical Legged
Robots:Leveraging Physics Invariance and Geometric Symmetries [14.848950116410231]
本稿では,基礎となるロボットシステムにおける対称性を利用したダイナミクスの学習手法を提案する。
ベクトル空間における全てのデータを表す既存のフレームワークは、ロボットの構造化情報を考えるのに失敗する。
論文 参考訳(メタデータ) (2022-10-13T19:57:46Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Equivariant Deep Dynamical Model for Motion Prediction [0.0]
深層生成モデリングは、データの最も単純化され圧縮された基礎的な記述を見つけるための動的モデリングの強力なアプローチである。
ほとんどの学習タスクは固有の対称性を持ち、すなわち入力変換は出力をそのままにするか、出力が同様の変換を行う。
本稿では, 入力空間の構造的表現を, 対称性の変換とともに変化するという意味で学習する動き予測のためのSO(3)同変深部力学モデル(EqDDM)を提案する。
論文 参考訳(メタデータ) (2021-11-02T21:01:43Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - Learning Equivariant Energy Based Models with Equivariant Stein
Variational Gradient Descent [80.73580820014242]
本稿では,確率モデルに対称性を組み込むことにより,確率密度の効率的なサンプリングと学習の問題に焦点をあてる。
まず、等変シュタイン変分勾配Descentアルゴリズムを導入する。これは、対称性を持つ密度からサンプリングするスタインの同一性に基づく同変サンプリング法である。
我々はエネルギーベースモデルのトレーニングを改善し、スケールアップする新しい方法を提案する。
論文 参考訳(メタデータ) (2021-06-15T01:35:17Z) - Inverse Learning of Symmetries [71.62109774068064]
2つの潜在部分空間からなるモデルで対称性変換を学ぶ。
我々のアプローチは、情報ボトルネックと連続的な相互情報正規化器の組み合わせに基づいています。
我々のモデルは, 人工的および分子的データセットにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-02-07T13:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。