Class-Incremental Learning by Knowledge Distillation with Adaptive
Feature Consolidation
- URL: http://arxiv.org/abs/2204.00895v1
- Date: Sat, 2 Apr 2022 16:30:04 GMT
- Title: Class-Incremental Learning by Knowledge Distillation with Adaptive
Feature Consolidation
- Authors: Minsoo Kang, Jaeyoo Park, and Bohyung Han
- Abstract summary: We present a novel class incremental learning approach based on deep neural networks.
It continually learns new tasks with limited memory for storing examples in the previous tasks.
Our algorithm is based on knowledge distillation and provides a principled way to maintain the representations of old models.
- Score: 39.97128550414934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel class incremental learning approach based on deep neural
networks, which continually learns new tasks with limited memory for storing
examples in the previous tasks. Our algorithm is based on knowledge
distillation and provides a principled way to maintain the representations of
old models while adjusting to new tasks effectively. The proposed method
estimates the relationship between the representation changes and the resulting
loss increases incurred by model updates. It minimizes the upper bound of the
loss increases using the representations, which exploits the estimated
importance of each feature map within a backbone model. Based on the
importance, the model restricts updates of important features for robustness
while allowing changes in less critical features for flexibility. This
optimization strategy effectively alleviates the notorious catastrophic
forgetting problem despite the limited accessibility of data in the previous
tasks. The experimental results show significant accuracy improvement of the
proposed algorithm over the existing methods on the standard datasets. Code is
available.
Related papers
- Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - Diverse Representation Embedding for Lifelong Person Re-Identification [10.824003066938234]
Lifelong Person Re-Identification (LReID) aims to continuously learn from successive data streams, matching individuals across multiple cameras.
Existing methods based on CNN backbone are insufficient to explore the representation of each instance from different perspectives.
We propose a Diverse Representations Embedding (DRE) framework that first explores a pure transformer for LReID.
arXiv Detail & Related papers (2024-03-24T04:22:37Z) - Fine-Grained Knowledge Selection and Restoration for Non-Exemplar Class
Incremental Learning [64.14254712331116]
Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past.
We propose a novel framework of fine-grained knowledge selection and restoration.
arXiv Detail & Related papers (2023-12-20T02:34:11Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Continual Learning with Pretrained Backbones by Tuning in the Input
Space [44.97953547553997]
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks.
We propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters.
arXiv Detail & Related papers (2023-06-05T15:11:59Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.