Diverse Representation Embedding for Lifelong Person Re-Identification
- URL: http://arxiv.org/abs/2403.16003v2
- Date: Tue, 2 Apr 2024 13:31:41 GMT
- Title: Diverse Representation Embedding for Lifelong Person Re-Identification
- Authors: Shiben Liu, Huijie Fan, Qiang Wang, Xiai Chen, Zhi Han, Yandong Tang,
- Abstract summary: Lifelong Person Re-Identification (LReID) aims to continuously learn from successive data streams, matching individuals across multiple cameras.
Existing methods based on CNN backbone are insufficient to explore the representation of each instance from different perspectives.
We propose a Diverse Representations Embedding (DRE) framework that first explores a pure transformer for LReID.
- Score: 10.824003066938234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lifelong Person Re-Identification (LReID) aims to continuously learn from successive data streams, matching individuals across multiple cameras. The key challenge for LReID is how to effectively preserve old knowledge while incrementally learning new information, which is caused by task-level domain gaps and limited old task datasets. Existing methods based on CNN backbone are insufficient to explore the representation of each instance from different perspectives, limiting model performance on limited old task datasets and new task datasets. Unlike these methods, we propose a Diverse Representations Embedding (DRE) framework that first explores a pure transformer for LReID. The proposed DRE preserves old knowledge while adapting to new information based on instance-level and task-level layout. Concretely, an Adaptive Constraint Module (ACM) is proposed to implement integration and push away operations between multiple overlapping representations generated by transformer-based backbone, obtaining rich and discriminative representations for each instance to improve adaptive ability of LReID. Based on the processed diverse representations, we propose Knowledge Update (KU) and Knowledge Preservation (KP) strategies at the task-level layout by introducing the adjustment model and the learner model. KU strategy enhances the adaptive learning ability of learner models for new information under the adjustment model prior, and KP strategy preserves old knowledge operated by representation-level alignment and logit-level supervision in limited old task datasets while guaranteeing the adaptive learning information capacity of the LReID model. Compared to state-of-the-art methods, our method achieves significantly improved performance in holistic, large-scale, and occluded datasets.
Related papers
- Distribution Aligned Semantics Adaption for Lifelong Person Re-Identification [43.32960398077722]
Re-ID systems need to be adaptable to changes in space and time.
Lifelong person Re-IDentification (LReID) methods rely on replaying exemplars from old domains and applying knowledge distillation in logits with old models.
We argue that a Re-ID model trained on diverse and challenging pedestrian images at a large scale can acquire robust and general human semantic knowledge.
arXiv Detail & Related papers (2024-05-30T05:15:38Z) - Auto-selected Knowledge Adapters for Lifelong Person Re-identification [54.42307214981537]
Lifelong Person Re-Identification requires systems to continually learn from non-overlapping datasets across different times and locations.
Existing approaches, either rehearsal-free or rehearsal-based, still suffer from the problem of catastrophic forgetting.
We introduce a novel framework AdalReID, that adopts knowledge adapters and a parameter-free auto-selection mechanism for lifelong learning.
arXiv Detail & Related papers (2024-05-29T11:42:02Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Class-Incremental Learning by Knowledge Distillation with Adaptive
Feature Consolidation [39.97128550414934]
We present a novel class incremental learning approach based on deep neural networks.
It continually learns new tasks with limited memory for storing examples in the previous tasks.
Our algorithm is based on knowledge distillation and provides a principled way to maintain the representations of old models.
arXiv Detail & Related papers (2022-04-02T16:30:04Z) - Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks [59.12108527904171]
A model should recognize new classes and maintain discriminability over old classes.
The task of recognizing few-shot new classes without forgetting old classes is called few-shot class-incremental learning (FSCIL)
We propose a new paradigm for FSCIL based on meta-learning by LearnIng Multi-phase Incremental Tasks (LIMIT)
arXiv Detail & Related papers (2022-03-31T13:46:41Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - An EM Framework for Online Incremental Learning of Semantic Segmentation [37.94734474090863]
We propose an incremental learning strategy that can adapt deep segmentation models without catastrophic forgetting, using a streaming input data with pixel annotations on the novel classes only.
We validate our approach on the PASCAL VOC 2012 and ADE20K datasets, and the results demonstrate its superior performance over the existing incremental methods.
arXiv Detail & Related papers (2021-08-08T11:30:09Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.