Quantum quasi-Lie systems: properties and applications
- URL: http://arxiv.org/abs/2204.00954v1
- Date: Sat, 2 Apr 2022 23:25:26 GMT
- Title: Quantum quasi-Lie systems: properties and applications
- Authors: J.F. Cari\~nena, J. de Lucas, and C. Sard\'on
- Abstract summary: A Lie system is a non-autonomous system of ordinary differential equations describing the integral curves of a $t$-dependent vector field taking values.
This work extends quasi-Lie schemes and quantum Lie systems to cope with $t$-dependent Schr"odinger equations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Lie system is a non-autonomous system of ordinary differential equations
describing the integral curves of a $t$-dependent vector field taking values in
a finite-dimensional Lie algebra of vector fields. Lie systems have been
generalised in the literature to deal with $t$-dependent Schr\"odinger
equations determined by a particular class of $t$-dependent Hamiltonian
operators, the quantum Lie systems, and other differential equations through
the so-called quasi-Lie schemes. This work extends quasi-Lie schemes and
quantum Lie systems to cope with $t$-dependent Schr\"odinger equations
associated with the here called quantum quasi-Lie systems. To illustrate our
methods, we propose and study a quantum analogue of the classical nonlinear
oscillator searched by Perelomov and we analyse a quantum one-dimensional fluid
in a trapping potential along with quantum $t$-dependent
Smorodinsky--Winternitz oscillators.
Related papers
- LiƩnard Type Nonlinear Oscillators and Quantum Solvability [0.0]
Li'enard-type nonlinear oscillators with linear and nonlinear damping terms exhibit diverse dynamical behavior in both the classical and quantum regimes.
The modified Emden equation categorized as Li'enard type-II exhibits isochronous oscillations at the classical level.
The study on the quantum counterpart of the system provides a deeper understanding of the behavior in the quantum realm as a typical PT-symmetric system.
arXiv Detail & Related papers (2024-05-02T11:26:52Z) - Classification of dynamical Lie algebras for translation-invariant
2-local spin systems in one dimension [44.41126861546141]
We provide a classification of Lie algebras generated by translation-invariant 2-local spin chain Hamiltonians.
We consider chains with open and periodic boundary conditions and find 17 unique dynamical Lie algebras.
In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches.
arXiv Detail & Related papers (2023-09-11T17:59:41Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Time complexity analysis of quantum algorithms via linear
representations for nonlinear ordinary and partial differential equations [31.986350313948435]
We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations.
We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations.
arXiv Detail & Related papers (2022-09-18T05:50:23Z) - Quantum-Classical Hybrid Systems and their Quasifree Transformations [0.0]
We study continuous variable systems in which quantum and classical degrees of freedom are combined and treated on the same footing.
This allows a unified treatment of a large variety of quantum operations involving measurements or dependence on classical parameters.
arXiv Detail & Related papers (2022-08-09T19:51:10Z) - Non-commutative phase-space Lotka-Volterra dynamics: the quantum
analogue [0.0]
The Lotka-Volterra (LV) dynamics is investigated in the framework of the Weyl-Wigner (WW) quantum mechanics (QM)
The WW framework provides the ground for identifying how classical and quantum evolution coexist at different scales.
The generality of the framework developed here extends the boundaries of the understanding of quantum-like effects on competitive microscopical bio-systems.
arXiv Detail & Related papers (2022-06-14T11:23:04Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Moment dynamics and observer design for a class of quasilinear quantum
stochastic systems [2.0508733018954843]
This paper is concerned with a class of open quantum systems whose dynamic variables have an algebraic structure.
The system interacts with external bosonic fields, and its Hamiltonian and coupling operators depend linearly on the system variables.
The tractability of the moment dynamics is also used for mean square optimal Luenberger observer design in a measurement-based filtering problem for a quasilinear quantum plant.
arXiv Detail & Related papers (2020-12-15T11:01:53Z) - Solving quantum trajectories for systems with linear Heisenberg-picture
dynamics and Gaussian measurement noise [0.0]
We study solutions to the quantum trajectory evolution of $N$-mode open quantum systems possessing a time-independent Hamiltonian, linear Heisenbergpicture dynamics, and measurement noise.
To illustrate our results, we solve some single-mode example systems, with the POVMs being of practical relevance to the inference of an initial state.
arXiv Detail & Related papers (2020-04-06T03:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.