Liénard Type Nonlinear Oscillators and Quantum Solvability
- URL: http://arxiv.org/abs/2405.01187v1
- Date: Thu, 2 May 2024 11:26:52 GMT
- Title: Liénard Type Nonlinear Oscillators and Quantum Solvability
- Authors: Chithiika Ruby V, Lakshmanan M,
- Abstract summary: Li'enard-type nonlinear oscillators with linear and nonlinear damping terms exhibit diverse dynamical behavior in both the classical and quantum regimes.
The modified Emden equation categorized as Li'enard type-II exhibits isochronous oscillations at the classical level.
The study on the quantum counterpart of the system provides a deeper understanding of the behavior in the quantum realm as a typical PT-symmetric system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Li\'{e}nard-type nonlinear oscillators with linear and nonlinear damping terms exhibit diverse dynamical behavior in both the classical and quantum regimes. In this paper, we consider examples of various one-dimensional Li\'{e}nard type-I and type-II oscillators. The associated Euler-Lagrange equations are divided into groups based on the characteristics of the damping and forcing terms. The Li\'{e}nard type-I oscillators often display localized solutions, isochronous and non-isochronous oscillations and are also precisely solvable in quantum mechanics in general, where the ordering parameters play an important role. These include Mathews-Lakshmanan and Higgs oscillators. However, the classical solutions of some of the nonlinear oscillators are expressed in terms of elliptic functions and have been found to be quasi-exactly solvable in the quantum region. The three-dimensional generalizations of these classical systems add more degrees of freedom, which show complex dynamics. Their quantum equivalents are also explored in this article. The isotonic generalizations of the non-isochronous nonlinear oscillators have also been solved both classically and quantum mechanically to advance the studies. The modified Emden equation categorized as Li\'{e}nard type-II exhibits isochronous oscillations at the classical level. This property makes it a valuable tool for studying the underlying nonlinear dynamics. The study on the quantum counterpart of the system provides a deeper understanding of the behavior in the quantum realm as a typical PT-symmetric system.
Related papers
- Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Time complexity analysis of quantum algorithms via linear
representations for nonlinear ordinary and partial differential equations [31.986350313948435]
We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations.
We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations.
arXiv Detail & Related papers (2022-09-18T05:50:23Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Quantum solvability of quadratic Li'enard type nonlinear oscillators
possessing maximal Lie point symmetries: An implication of arbitrariness of
ordering parameters [0.0]
Two one-dimensional quadratic Li'enard type nonlinear oscillators are classified under the category of maximal (eight parameter) Lie point symmetry group.
Classically, both the systems were also shown to be linearizable as well as isochronic.
arXiv Detail & Related papers (2021-06-03T14:27:20Z) - Quantum limit-cycles and the Rayleigh and van der Pol oscillators [0.0]
Self-oscillating systems are emerging as canonical models for driven dissipative nonequilibrium open quantum systems.
We derive an exact analytical solution for the steady-state quantum dynamics of the simplest of these models.
Our solution is a generalization to arbitrary temperature of existing solutions for very-low, or zero, temperature.
arXiv Detail & Related papers (2020-11-05T08:51:51Z) - Microscopic quantum generalization of classical Li\'{e}nard oscillators [3.2768228723567527]
We have explored the microscopic quantum generalization of classical Li'enard systems.
It has been shown that detailed balance in the form of fluctuation-dissipation relation preserves the dynamical stability of the attractors even in case of vacuum excitation.
arXiv Detail & Related papers (2020-09-15T14:53:47Z) - On the classical and quantum dynamics of a class of nonpolynomial
oscillators [0.0]
We consider two one dimensional nonlinear oscillators, namely (i) Higgs oscillator and (ii) a $k$-dependent nonpolynomial rational potential.
We observe that the quantum version of the Higgs oscillator is exactly solvable under appropriate restrictions of the ordering parameters.
The three dimensional generalization of the quantum counterpart of the $k$-dependent nonpolynomial potential is found out to be quasi exactly solvable.
arXiv Detail & Related papers (2020-08-17T07:52:37Z) - Bistability in the dissipative quantum systems I: Damped and driven
nonlinear oscillator [0.0]
We revisit quantum dynamics of the damped and driven nonlinear oscillator.
In the classical case this system has two stationary solutions (the limit cycles) in the certain parameter region, which is the origin of the celebrated bistability phenomenon.
arXiv Detail & Related papers (2020-02-26T09:24:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.