Kernel Extreme Learning Machine Optimized by the Sparrow Search
Algorithm for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2204.00973v1
- Date: Sun, 3 Apr 2022 02:46:36 GMT
- Title: Kernel Extreme Learning Machine Optimized by the Sparrow Search
Algorithm for Hyperspectral Image Classification
- Authors: Zhixin Yan, Jiawei Huang, Kehua Xiang
- Abstract summary: This paper uses Multi-Scale Total Variation (MSTV) to extract the spectral features, local binary pattern (LBP) to extract spatial features, and feature superposition to obtain the fused features of hyperspectral images.
A new swarm intelligence optimization method with high convergence and strong global search capability, the Sparrow Search Algorithm (SSA), is used to optimize the kernel parameters and regularization coefficients of the Kernel Extreme Learning Machine (KELM)
The experimental results show that MLS-KELM has better classification performance and generalization ability compared with other popular classification methods, and MLS-KELM shows its strong robustness in the small sample
- Score: 16.51364033144792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To improve the classification performance and generalization ability of the
hyperspectral image classification algorithm, this paper uses Multi-Scale Total
Variation (MSTV) to extract the spectral features, local binary pattern (LBP)
to extract spatial features, and feature superposition to obtain the fused
features of hyperspectral images. A new swarm intelligence optimization method
with high convergence and strong global search capability, the Sparrow Search
Algorithm (SSA), is used to optimize the kernel parameters and regularization
coefficients of the Kernel Extreme Learning Machine (KELM). In summary, a
multiscale fusion feature hyperspectral image classification method (MLS-KELM)
is proposed in this paper. The Indian Pines, Pavia University and Houston 2013
datasets were selected to validate the classification performance of MLS-KELM,
and the method was applied to ZY1-02D hyperspectral data. The experimental
results show that MLS-KELM has better classification performance and
generalization ability compared with other popular classification methods, and
MLS-KELM shows its strong robustness in the small sample case.
Related papers
- Hierarchical Homogeneity-Based Superpixel Segmentation: Application to Hyperspectral Image Analysis [11.612069983959985]
We propose a multiscale superpixel method that is computationally efficient for processing hyperspectral data.
The proposed hierarchical approach leads to superpixels of variable sizes but with higher spectral homogeneity.
For validation, the proposed homogeneity-based hierarchical method was applied as a preprocessing step in the spectral unmixing and classification tasks.
arXiv Detail & Related papers (2024-07-22T01:20:32Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - ConvBLS: An Effective and Efficient Incremental Convolutional Broad
Learning System for Image Classification [63.49762079000726]
We propose a convolutional broad learning system (ConvBLS) based on the spherical K-means (SKM) algorithm and two-stage multi-scale (TSMS) feature fusion.
Our proposed ConvBLS method is unprecedentedly efficient and effective.
arXiv Detail & Related papers (2023-04-01T04:16:12Z) - A new filter for dimensionality reduction and classification of
hyperspectral images using GLCM features and mutual information [0.0]
We introduce a new methodology for dimensionality reduction and classification of hyperspectral images.
We take into account both spectral and spatial information based on mutual information.
Experiments are performed on three well-known hyperspectral benchmark datasets.
arXiv Detail & Related papers (2022-11-01T13:19:08Z) - New wrapper method based on normalized mutual information for dimension
reduction and classification of hyperspectral images [0.0]
We propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE)
Experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS)
arXiv Detail & Related papers (2022-10-25T21:17:11Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Land Use and Land Cover Classification using a Human Group based
Particle Swarm Optimization Algorithm with a LSTM classifier on
hybrid-pre-processing Remote Sensing Images [0.0]
Land use and land cover (LULC) classification using remote sensing imagery plays a vital role in many environment modeling and land use inventories.
In this study, a hybrid feature optimization algorithm along with a deep learning classifier is proposed to improve the performance of LULC classification.
arXiv Detail & Related papers (2020-08-04T15:30:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.