A lightweight three-user secure quantum summation protocol without a
third party based on single-particle states
- URL: http://arxiv.org/abs/2204.00991v2
- Date: Sun, 18 Sep 2022 01:53:29 GMT
- Title: A lightweight three-user secure quantum summation protocol without a
third party based on single-particle states
- Authors: Tian-Yu Ye, Tian-Jie Xu
- Abstract summary: A lightweight three-user secure quantum summation protocol is put forward by using single-particle states.
This protocol only requires single-particle states rather than quantum entangled states as the initial quantum resource.
Security analysis proves that this protocol is secure against both the outside attacks and the participant attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a lightweight three-user secure quantum summation protocol is
put forward by using single-particle states, which can accomplish the goal that
three users cooperate together to calculate the modulo 2 addition of their
private messages without the help of a third party. This protocol only requires
single-particle states rather than quantum entangled states as the initial
quantum resource, and only needs single-particle measurements and Bell basis
measurements. This protocol needs none of quantum entanglement swapping, the
Pauli operations, the controlled-not (CNOT) operation, the Hadamard gate or a
pre-shared private key sequence. Security analysis proves that this protocol is
secure against both the outside attacks and the participant attacks. Compared
with the existing two-dimensional three-user quantum summation protocols, this
protocol more or less takes advantage over them on the aspects of the initial
quantum resource, users' quantum measurement, the usage of quantum entanglement
swapping, the usage of Pauli operations, the usage of CNOT operation or the
usage of Hadamard gate.
Related papers
- Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Three-party secure semiquantum summation without entanglement among
quantum user and classical users [15.220708214434984]
A three-party secure semiquantum summation protocol can calculate the modulo 2 addition of the private bits from one quantum participant and two classical participants.
This protocol needs none of quantum entanglement swapping, the unitary operation or a pre-shared private key.
arXiv Detail & Related papers (2022-05-15T01:22:10Z) - Measure-resend semi-quantum private comparison without entanglement [0.0]
Our protocol allows two classical users to compare the equality of their private secrets under the help of a quantum third party.
The quantum TP is semi-honest in the sense that he is allowed to misbehave on his own but cannot conspire with either of users.
arXiv Detail & Related papers (2022-05-13T00:43:05Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Single-state multi-party semiquantum key agreement protocol based on
multi-particle GHZ entangled states [3.312385039704987]
We propose a single-state three-party semiquantum key agreement (SQKA) protocol with three-particle GHZ entangled states first.
Detailed security analysis turns out that the proposed single-state three-party SQKA protocol is secure against several famous attacks from an outside eavesdropper.
arXiv Detail & Related papers (2021-12-11T00:13:16Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Two-party quantum private comparison based on eight-qubit entangled
state [0.7130302992490973]
The purpose of quantum private comparison (QPC) is to solve "Tierce problem" using quantum mechanics laws.
We consider for the first time the usefulness of eight-qubit entangled states for QPC by proposing a new protocol.
arXiv Detail & Related papers (2021-01-05T12:07:45Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Experimental characterisation of unsharp qubit observables and
sequential measurement incompatibility via quantum random access codes [0.0]
We report an experimental implementation of unsharp qubit measurements in a sequential communication protocol.
The protocol involves three parties; the first party prepares a qubit system, the second party performs operations which return a classical and quantum outcome, and the latter is measured by the third party.
arXiv Detail & Related papers (2020-01-14T13:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.