Virtual Relational Knowledge Graphs for Recommendation
- URL: http://arxiv.org/abs/2204.01089v1
- Date: Sun, 3 Apr 2022 15:14:20 GMT
- Title: Virtual Relational Knowledge Graphs for Recommendation
- Authors: Lingyun Lu and Bang Wang and Zizhuo Zhang and Shenghao Liu and Han Xu
- Abstract summary: We argue that it is not efficient nor effective to use every relation type for item encoding.
We first construct virtual relational graphs (VRKGs) by an unsupervised learning scheme.
We also employ the LWS mechanism on a user-item bipartite graph for user representation learning.
- Score: 15.978408290522852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating knowledge graph as side information has become a new trend in
recommendation systems. Recent studies regard items as entities of a knowledge
graph and leverage graph neural networks to assist item encoding, yet by
considering each relation type individually. However, relation types are often
too many and sometimes one relation type involves too few entities. We argue
that it is not efficient nor effective to use every relation type for item
encoding. In this paper, we propose a VRKG4Rec model (Virtual Relational
Knowledge Graphs for Recommendation), which explicitly distinguish the
influence of different relations for item representation learning. We first
construct virtual relational graphs (VRKGs) by an unsupervised learning scheme.
We also design a local weighted smoothing (LWS) mechanism for encoding nodes,
which iteratively updates a node embedding only depending on the embedding of
its own and its neighbors, but involve no additional training parameters. We
also employ the LWS mechanism on a user-item bipartite graph for user
representation learning, which utilizes encodings of items with relational
knowledge to help training representations of users. Experiment results on two
public datasets validate that our VRKG4Rec model outperforms the
state-of-the-art methods.
Related papers
- DEKGCI: A double-sided recommendation model for integrating knowledge
graph and user-item interaction graph [0.0]
We propose DEKGCI, a novel double-sided recommendation model.
We use the high-order collaborative signals from the user-item interaction graph to enrich the user representations on the user side.
arXiv Detail & Related papers (2023-06-24T01:54:49Z) - Learning Representations without Compositional Assumptions [79.12273403390311]
We propose a data-driven approach that learns feature set dependencies by representing feature sets as graph nodes and their relationships as learnable edges.
We also introduce LEGATO, a novel hierarchical graph autoencoder that learns a smaller, latent graph to aggregate information from multiple views dynamically.
arXiv Detail & Related papers (2023-05-31T10:36:10Z) - Instant Representation Learning for Recommendation over Large Dynamic
Graphs [29.41179019520622]
We propose SUPA, a novel graph neural network for dynamic multiplex heterogeneous graphs.
For each new edge, SUPA samples an influenced subgraph, updates the representations of the two interactive nodes, and propagates the interaction information to the sampled subgraph.
To train SUPA incrementally online, we propose InsLearn, an efficient workflow for single-pass training of large dynamic graphs.
arXiv Detail & Related papers (2023-05-22T15:36:10Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
arXiv Detail & Related papers (2022-12-11T19:07:34Z) - IA-GCN: Interactive Graph Convolutional Network for Recommendation [13.207235494649343]
Graph Convolutional Network (GCN) has become a novel state-of-the-art for Collaborative Filtering (CF) based Recommender Systems (RS)
We build bilateral interactive guidance between each user-item pair and propose a new model named IA-GCN (short for InterActive GCN)
Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion.
arXiv Detail & Related papers (2022-04-08T03:38:09Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.