Few Shot Protein Generation
- URL: http://arxiv.org/abs/2204.01168v1
- Date: Sun, 3 Apr 2022 22:14:02 GMT
- Title: Few Shot Protein Generation
- Authors: Soumya Ram and Tristan Bepler
- Abstract summary: We present the MSA-to-protein transformer, a generative model of protein sequences conditioned on protein families represented by multiple sequence alignments (MSAs)
Unlike existing approaches to learning generative models of protein families, the MSA-to-protein transformer conditions sequence generation directly on a learned encoding of the multiple sequence alignment.
Our generative approach accurately models epistasis and indels and allows for exact inference and efficient sampling unlike other approaches.
- Score: 4.7210697296108926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the MSA-to-protein transformer, a generative model of protein
sequences conditioned on protein families represented by multiple sequence
alignments (MSAs). Unlike existing approaches to learning generative models of
protein families, the MSA-to-protein transformer conditions sequence generation
directly on a learned encoding of the multiple sequence alignment,
circumventing the need for fitting dedicated family models. By training on a
large set of well-curated multiple sequence alignments in Pfam, our
MSA-to-protein transformer generalizes well to protein families not observed
during training and outperforms conventional family modeling approaches,
especially when MSAs are small. Our generative approach accurately models
epistasis and indels and allows for exact inference and efficient sampling
unlike other approaches. We demonstrate the protein sequence modeling
capabilities of our MSA-to-protein transformer and compare it with alternative
sequence modeling approaches in comprehensive benchmark experiments.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training [48.398329286769304]
Multiple Sequence Alignment (MSA) plays a pivotal role in unveiling the evolutionary trajectories of protein families.
MSAGPT is a novel approach to prompt protein structure predictions via MSA generative pretraining in the low MSA regime.
arXiv Detail & Related papers (2024-06-08T04:23:57Z) - Diffusion on language model embeddings for protein sequence generation [0.5442686600296733]
We introduce DiMA, a model that leverages continuous diffusion to generate amino acid sequences.
We quantitatively illustrate the impact of the design choices that lead to its superior performance.
Our approach consistently produces novel, diverse protein sequences that accurately reflect the inherent structural and functional diversity of the protein space.
arXiv Detail & Related papers (2024-03-06T14:15:20Z) - PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
Compound-Protein Interaction prediction aims to predict the pattern and strength of compound-protein interactions for rational drug discovery.
Existing deep learning-based methods utilize only the single modality of protein sequences or structures.
We propose a novel multi-scale Protein Sequence-structure Contrasting framework for CPI prediction.
arXiv Detail & Related papers (2024-02-13T03:51:10Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Pairing interacting protein sequences using masked language modeling [0.3222802562733787]
We develop a method to pair interacting protein sequences using protein language models trained on sequence alignments.
We exploit the ability of MSA Transformer to fill in masked amino acids in multiple sequence alignments using the surrounding context.
We show that it captures inter-chain coevolution while it was trained on single-chain data, which means that it can be used out-of-distribution.
arXiv Detail & Related papers (2023-08-14T13:42:09Z) - PoET: A generative model of protein families as sequences-of-sequences [5.05828899601167]
We propose a generative model of whole protein families that learns to generate sets of related proteins as sequences-of-sequences.
PoET can be used as a retrieval-augmented language model to generate and score arbitrary modifications conditioned on any protein family of interest.
We show that PoET outperforms existing protein language models and evolutionary sequence models for variant function prediction across proteins of all depths.
arXiv Detail & Related papers (2023-06-09T16:06:36Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations.
We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models.
By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins.
arXiv Detail & Related papers (2022-12-20T00:26:23Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Generative power of a protein language model trained on multiple
sequence alignments [0.5639904484784126]
Computational models starting from large ensembles of evolutionarily related protein sequences capture a representation of protein families.
Protein language models trained on multiple sequence alignments, such as MSA Transformer, are highly attractive candidates to this end.
We propose and test an iterative method that directly uses the masked language modeling objective to generate sequences using MSA Transformer.
arXiv Detail & Related papers (2022-04-14T16:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.