PLAME: Leveraging Pretrained Language Models to Generate Enhanced Protein Multiple Sequence Alignments
- URL: http://arxiv.org/abs/2507.07032v1
- Date: Tue, 17 Jun 2025 04:11:30 GMT
- Title: PLAME: Leveraging Pretrained Language Models to Generate Enhanced Protein Multiple Sequence Alignments
- Authors: Hanqun Cao, Xinyi Zhou, Zijun Gao, Chenyu Wang, Xin Gao, Zhi Zhang, Chunbin Gu, Ge Liu, Pheng-Ann Heng,
- Abstract summary: Protein structure prediction is essential for drug discovery and understanding biological functions.<n>Most folding models rely heavily on multiple sequence alignments (MSAs) to boost prediction performance.<n>We propose PLAME, a novel MSA design model that leverages evolutionary embeddings from pretrained protein language models.
- Score: 53.55710514466851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protein structure prediction is essential for drug discovery and understanding biological functions. While recent advancements like AlphaFold have achieved remarkable accuracy, most folding models rely heavily on multiple sequence alignments (MSAs) to boost prediction performance. This dependency limits their effectiveness on low-homology proteins and orphan proteins, where MSA information is sparse or unavailable. To address this limitation, we propose PLAME, a novel MSA design model that leverages evolutionary embeddings from pretrained protein language models. Unlike existing methods, PLAME introduces pretrained representations to enhance evolutionary information and employs a conservation-diversity loss to enhance generation quality. Additionally, we propose a novel MSA selection method to effectively screen high-quality MSAs and improve folding performance. We also propose a sequence quality assessment metric that provides an orthogonal perspective to evaluate MSA quality. On the AlphaFold2 benchmark of low-homology and orphan proteins, PLAME achieves state-of-the-art performance in folding enhancement and sequence quality assessment, with consistent improvements demonstrated on AlphaFold3. Ablation studies validate the effectiveness of the MSA selection method, while extensive case studies on various protein types provide insights into the relationship between AlphaFold's prediction quality and MSA characteristics. Furthermore, we demonstrate that PLAME can serve as an adapter achieving AlphaFold2-level accuracy with the ESMFold's inference speed.
Related papers
- AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model [92.51919604882984]
We introduce AMix-1, a powerful protein foundation model built on Flow Bayesian Networks.<n>AMix-1 is empowered by a systematic training methodology, encompassing pretraining scaling laws, emergent capability analysis, in-context learning mechanism, and test-time scaling algorithm.<n>Building on this foundation, we devise a multiple sequence alignment (MSA)-based in-context learning strategy to unify protein design into a general framework.
arXiv Detail & Related papers (2025-07-11T17:02:25Z) - DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts [76.59606029593085]
DisProtBench is a benchmark for evaluating protein structure prediction models (PSPMs) under structural disorder and complex biological conditions.<n>DisProtBench spans three key axes: data complexity, task diversity, and Interpretability.<n>Results reveal significant variability in model robustness under disorder, with low-confidence regions linked to functional prediction failures.
arXiv Detail & Related papers (2025-06-18T23:58:22Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
arXiv Detail & Related papers (2024-06-16T08:23:21Z) - MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training [48.398329286769304]
Multiple Sequence Alignment (MSA) plays a pivotal role in unveiling the evolutionary trajectories of protein families.
MSAGPT is a novel approach to prompt protein structure predictions via MSA generative pretraining in the low MSA regime.
arXiv Detail & Related papers (2024-06-08T04:23:57Z) - Fine-tuning Protein Language Models with Deep Mutational Scanning improves Variant Effect Prediction [3.2358123775807575]
Protein Language Models (PLMs) have emerged as performant and scalable tools for predicting the functional impact and clinical significance of protein-coding variants.
We present a novel fine-tuning approach to improve the performance of PLMs with experimental maps of variant effects from Deep Mutational Scanning (DMS)
These findings demonstrate that DMS is a promising source of sequence diversity and supervised training data for improving the performance of PLMs for variant effect prediction.
arXiv Detail & Related papers (2024-05-10T14:50:40Z) - Beyond ESM2: Graph-Enhanced Protein Sequence Modeling with Efficient Clustering [24.415612744612773]
Proteins are essential to life's processes, underpinning evolution and diversity.
Advances in sequencing technology have revealed millions of proteins, underscoring the need for sophisticated pre-trained protein models for biological analysis and AI development.
Facebook's ESM2, the most advanced protein language model to date, leverages a masked prediction task for unsupervised learning, crafting amino acid representations with notable biochemical accuracy.
Yet, it lacks in delivering functional protein insights, signaling an opportunity for enhancing representation quality.
This study addresses this gap by incorporating protein family classification into ESM2's training, while a contextual prediction task fine-tunes local
arXiv Detail & Related papers (2024-04-24T11:09:43Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Enhancing the Protein Tertiary Structure Prediction by Multiple Sequence
Alignment Generation [30.2874172276931]
We introduce MSA-Augmenter, which generates useful, novel protein sequences not currently found in databases.
Our experiments on CASP14 demonstrate that MSA-Augmenter can generate de novo sequences that retain co-evolutionary information from inferior MSAs.
arXiv Detail & Related papers (2023-06-02T14:13:50Z) - Unsupervisedly Prompting AlphaFold2 for Few-Shot Learning of Accurate
Folding Landscape and Protein Structure Prediction [28.630603355510324]
We present EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets.
By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in low-data regime.
arXiv Detail & Related papers (2022-08-20T10:23:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.