論文の概要: Flexible Portrait Image Editing with Fine-Grained Control
- arxiv url: http://arxiv.org/abs/2204.01318v1
- Date: Mon, 4 Apr 2022 08:39:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 13:06:55.302711
- Title: Flexible Portrait Image Editing with Fine-Grained Control
- Title(参考訳): 細粒度制御によるフレキシブルポートレート画像編集
- Authors: Linlin Liu, Qian Fu, Fei Hou, Ying He
- Abstract要約: 我々は,1つのニューラルネットワークモデルを用いて,ジオメトリ,色,光,影のきめ細かい編集を支援する肖像画編集法を開発した。
生成者は、エッジマップ、カラーパレット、スライダー、マスクなどの変換された条件入力をユーザが直接編集できる。
本手法の有効性をCelebAMask-HQデータセット上で評価し,色/色/影/光の編集,手描きのスケッチから画像への変換,色変換など,幅広いタスクで検証した。
- 参考スコア(独自算出の注目度): 12.32304366243904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a new method for portrait image editing, which supports
fine-grained editing of geometries, colors, lights and shadows using a single
neural network model. We adopt a novel asymmetric conditional GAN architecture:
the generators take the transformed conditional inputs, such as edge maps,
color palette, sliders and masks, that can be directly edited by the user; the
discriminators take the conditional inputs in the way that can guide
controllable image generation more effectively. Taking color editing as an
example, we feed color palettes (which can be edited easily) into the
generator, and color maps (which contain positional information of colors) into
the discriminator. We also design a region-weighted discriminator so that
higher weights are assigned to more important regions, like eyes and skin.
Using a color palette, the user can directly specify the desired colors of
hair, skin, eyes, lip and background. Color sliders allow the user to blend
colors in an intuitive manner. The user can also edit lights and shadows by
modifying the corresponding masks. We demonstrate the effectiveness of our
method by evaluating it on the CelebAMask-HQ dataset with a wide range of
tasks, including geometry/color/shadow/light editing, hand-drawn sketch to
image translation, and color transfer. We also present ablation studies to
justify our design.
- Abstract(参考訳): 我々は,1つのニューラルネットワークモデルを用いたジオメトリ,色,光,影のきめ細かい編集を支援する肖像画編集法を開発した。
エッジマップ、カラーパレット、スライダ、マスクなどの変換された条件付き入力をユーザが直接編集できる、ジェネレータが制御可能な画像生成をより効果的に導くように条件付き入力を取る、という、新しい非対称条件付きganアーキテクチャを採用する。
例えば、色編集を例として、色パレット(簡単に編集できる)をジェネレータに、色マップ(色の位置情報を含む)を識別器に供給します。
また、目や皮膚などのより重要な領域により高い重量を割り当てるように、地域重み付き判別器を設計する。
カラーパレットを使用して、ユーザーは髪、肌、目、唇、背景の所望の色を直接指定することができる。
カラースライダーは、ユーザが直感的に色を混ぜることを可能にする。
ユーザーは対応するマスクを変更してライトやシャドーを編集することもできる。
本手法の有効性をCelebAMask-HQデータセット上で評価し,色/色/影/光の編集,手描きスケッチから画像への変換,色変換など,幅広いタスクで検証した。
設計を正当化するためのアブレーション研究も提示する。
関連論文リスト
- Automatic Controllable Colorization via Imagination [55.489416987587305]
本稿では,反復的な編集と修正が可能な自動色付けフレームワークを提案する。
グレースケール画像内のコンテンツを理解することにより、トレーニング済みの画像生成モデルを用いて、同じコンテンツを含む複数の画像を生成する。
これらの画像は、人間の専門家の過程を模倣して、色付けの参考となる。
論文 参考訳(メタデータ) (2024-04-08T16:46:07Z) - Mesh-Guided Neural Implicit Field Editing [42.78979161815414]
本稿では,ニューラルネットワークの編集におけるガイド機構としてメッシュを用いた新しいアプローチを提案する。
まず,ニューラル暗黙フィールドから多角形メッシュ抽出のためのマーチングテトラヘドラを用いた微分可能手法を提案する。
次に、この抽出メッシュにボリュームレンダリングから得られた色を割り当てるために、微分可能な色抽出器を設計する。
この差別化可能なカラーメッシュは、暗黙のメッシュから暗示のフィールドへの勾配のバックプロパゲーションを可能にし、ニューラルな暗示のフィールドの幾何学と色をユーザが容易に操作できるようにする。
論文 参考訳(メタデータ) (2023-12-04T18:59:58Z) - Dequantization and Color Transfer with Diffusion Models [5.228564799458042]
量子化されたイメージは、パッチベースの編集とパレット転送を簡単に抽象化する。
提案モデルでは,ユーザが求めているカラーパレットを尊重する自然な画像を生成できることが示される。
本手法は,画像のテクスチャを尊重しながら,画像のパッチを塗り替えることによって,別の実用的な編集に拡張することができる。
論文 参考訳(メタデータ) (2023-07-06T00:07:32Z) - RecolorNeRF: Layer Decomposed Radiance Fields for Efficient Color
Editing of 3D Scenes [21.284044381058575]
本稿では,ニューラルラジアンスフィールドのための新しいユーザフレンドリーなカラー編集手法であるRecolorNeRFを提案する。
私たちのキーとなるアイデアは、シーンを純粋な色の層に分解し、パレットを形成することです。
効率的なパレットベースの編集をサポートするには、各レイヤの色を可能な限り表現する必要がある。
論文 参考訳(メタデータ) (2023-01-19T09:18:06Z) - PaletteNeRF: Palette-based Appearance Editing of Neural Radiance Fields [60.66412075837952]
本稿では,3次元色分解に基づくニューラルラジアンスフィールド(NeRF)の出現編集手法であるPaletteNeRFを提案する。
提案手法は,各3次元点の出現を,パレットベースによる線形結合に分解する。
我々は、セマンティック・アウェアな外観編集のためのセマンティック機能を圧縮したフレームワークを拡張した。
論文 参考訳(メタデータ) (2022-12-21T00:20:01Z) - Hierarchical Vectorization for Portrait Images [12.32304366243904]
本稿では,画像を自動的に3階層の階層表現に変換するベクトル化手法を提案する。
基層は、鮮やかな幾何学的特徴と低周波色を特徴付けるスパース拡散曲線からなる。
中層は、仕様のハイライトと影を大きく編集可能なポアソン領域(PR)にエンコードし、ユーザーは直接照明を調整できる。
トップレベルには、高周波残基のための2種類のピクセルサイズのPRと、ピンプや色素化などの細部が含まれている。
論文 参考訳(メタデータ) (2022-05-24T07:58:41Z) - HairCLIP: Design Your Hair by Text and Reference Image [100.85116679883724]
本稿では, 毛髪属性を個別に, 共同で操作できる新しい毛髪編集インタラクションモードを提案する。
画像とテキストの条件を共有埋め込み空間にエンコードし、統一的なヘア編集フレームワークを提案する。
念入りに設計されたネットワーク構造と損失関数により,我々のフレームワークは高品質な毛髪編集を行うことができる。
論文 参考訳(メタデータ) (2021-12-09T18:59:58Z) - SpaceEdit: Learning a Unified Editing Space for Open-Domain Image
Editing [94.31103255204933]
オープンドメイン画像の色やトーン調整に着目したオープンドメイン画像編集のための統一モデルを提案する。
我々のモデルは、よりセマンティックで直感的で操作が容易な統合編集空間を学習する。
画像ペアを学習した編集空間の潜在コードに変換することで、下流編集タスクに我々のモデルを活用できることが示される。
論文 参考訳(メタデータ) (2021-11-30T23:53:32Z) - SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [95.45728042499836]
マスクレス局所画像操作という,スケッチに基づく画像操作の新しいパラダイムを提案する。
本モデルでは,対象の修正領域を自動的に予測し,構造型ベクトルにエンコードする。
ジェネレータは、スタイルベクトルとスケッチに基づいて、新しいイメージコンテンツを合成する。
論文 参考訳(メタデータ) (2021-11-30T02:42:31Z) - Deep Saliency Prior for Reducing Visual Distraction [12.28561668097479]
画像の歪みを軽減するための強力な編集効果を多数生成する。
結果として生じる効果は、人間の視覚システムに関する認知研究と一致している。
本研究は,様々な自然画像に対して,オリジナル画像と編集結果との視線変化を評価し,評価するための知覚的研究を行う。
論文 参考訳(メタデータ) (2021-09-05T03:19:21Z) - PIE: Portrait Image Embedding for Semantic Control [82.69061225574774]
本稿では,StyleGANの潜在空間に実際の肖像画を埋め込むための最初のアプローチを提案する。
トレーニング済みのニューラルネットワークであるStyleRigは、3D形態素顔モデルの制御空間をGANの潜在空間にマッピングする。
アイデンティティエネルギー保存用語は、顔の整合性を維持しながら空間的コヒーレントな編集を可能にする。
論文 参考訳(メタデータ) (2020-09-20T17:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。