Characterizing the Reproducibility of Noisy Quantum Circuits
- URL: http://arxiv.org/abs/2204.01529v1
- Date: Fri, 1 Apr 2022 05:23:50 GMT
- Title: Characterizing the Reproducibility of Noisy Quantum Circuits
- Authors: Samudra Dasgupta and Travis S. Humble
- Abstract summary: We show that device characterization offers an analytic bound on the observed variability of a quantum circuit.
We validate the method using an ensemble of single qubit test circuits executed on a superconducting transmon processor with well-characterized readout and gate error rates.
- Score: 0.40611352512781856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of a quantum computer to reproduce or replicate the results of a
quantum circuit is a key concern for verifying and validating applications of
quantum computing. Statistical variations in circuit outcomes that arise from
ill-characterized fluctuations in device noise may lead to computational errors
and irreproducible results. While device characterization offers a direct
assessment of noise, an outstanding concern is how such metrics bound the
reproducibility of a given quantum circuit. Here, we first directly assess the
reproducibility of a noisy quantum circuit, in terms of the Hellinger distance
between the computational results, and then we show that device
characterization offers an analytic bound on the observed variability. We
validate the method using an ensemble of single qubit test circuits, executed
on a superconducting transmon processor with well-characterized readout and
gate error rates. The resulting description for circuit reproducibility, in
terms of a composite device parameter, is confirmed to define an upper bound on
the observed Hellinger distance, across the variable test circuits. This
predictive correlation between circuit outcomes and device characterization
offers an efficient method for assessing the reproducibility of noisy quantum
circuits.
Related papers
- Quantum Error Mitigation via Linear-Depth Verifier Circuits [0.044998333629984864]
We provide a method for constructing verifier circuits for any quantum circuit that is accurately represented by a low-dimensional matrix product operator (MPO)
By transpiling the circuits to a 2D array of qubits, we estimate the crossover point where the verifier circuit is shallower than the circuit itself, and hence useful for quantum error mitigation (QEM)
We conclude that our approach may be useful for calibrating quantum sub-circuits to counter coherent noise but cannot correct for the incoherent noise present in current devices.
arXiv Detail & Related papers (2024-11-05T16:44:18Z) - Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
We propose using a transformer model to predict the expressibility of quantum circuit ansatze.
This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.
arXiv Detail & Related papers (2024-05-29T07:34:07Z) - Scalable noise characterisation of syndrome extraction circuits with averaged circuit eigenvalue sampling [0.0]
Averaged circuit eigenvalue sampling (ACES) is a general framework for the scalable noise characterisation of quantum circuits.
By rigorously analysing the performance of ACES experiments, we derive a figure of merit for their expected performance.
Our results indicate that detailed noise characterisation methods are scalable to near-term quantum devices.
arXiv Detail & Related papers (2024-04-09T18:00:30Z) - Inverted-circuit zero-noise extrapolation for quantum gate error mitigation [0.0]
We propose a simple method for estimating the strength of errors occurring in a quantum circuit.
The method determines the error strength for a circuit by appending to it the inverted circuit and measuring the probability of the initial state.
Our method proves to be particularly effective on current hardware, showcasing its suitability for near-term quantum computing applications.
arXiv Detail & Related papers (2024-03-03T20:27:27Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Machine learning of noise-resilient quantum circuits [0.8258451067861933]
Noise mitigation and reduction will be crucial for obtaining useful answers from near-term quantum computers.
We present a general framework based on machine learning for reducing the impact of quantum hardware noise on quantum circuits.
Our method, called noise-aware circuit learning (NACL), applies to circuits designed to compute a unitary transformation, prepare a set of quantum states, or estimate an observable of a many-qubit state.
arXiv Detail & Related papers (2020-07-02T15:43:32Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.