Quantum Error Mitigation via Linear-Depth Verifier Circuits
- URL: http://arxiv.org/abs/2411.03245v1
- Date: Tue, 05 Nov 2024 16:44:18 GMT
- Title: Quantum Error Mitigation via Linear-Depth Verifier Circuits
- Authors: Angus Mingare, Anastasia Moroz, Marcell D Kovacs, Andrew G Green,
- Abstract summary: We provide a method for constructing verifier circuits for any quantum circuit that is accurately represented by a low-dimensional matrix product operator (MPO)
By transpiling the circuits to a 2D array of qubits, we estimate the crossover point where the verifier circuit is shallower than the circuit itself, and hence useful for quantum error mitigation (QEM)
We conclude that our approach may be useful for calibrating quantum sub-circuits to counter coherent noise but cannot correct for the incoherent noise present in current devices.
- Score: 0.044998333629984864
- License:
- Abstract: Implementing many important sub-circuits on near-term quantum devices remains a challenge due to the high levels of noise and the prohibitive depth on standard nearest-neighbour topologies. Overcoming these barriers will likely require quantum error mitigation (QEM) strategies. This work introduces the notion of efficient, high-fidelity verifier circuit architectures that we propose for use in such a QEM scheme. We provide a method for constructing verifier circuits for any quantum circuit that is accurately represented by a low-dimensional matrix product operator (MPO). We demonstrate our method by constructing explicit verifier circuits for multi-controlled single unitary gates as well as the quantum Fourier transform (QFT). By transpiling the circuits to a 2D array of qubits, we estimate the crossover point where the verifier circuit is shallower than the circuit itself, and hence useful for QEM. We propose a method of in situ QEM using the verifier circuit architecture. We conclude that our approach may be useful for calibrating quantum sub-circuits to counter coherent noise but cannot correct for the incoherent noise present in current devices.
Related papers
- Equivalence Checking of Quantum Circuits via Intermediary Matrix Product Operator [4.306566710489809]
Equivalence checking plays a vital role in identifying errors that may arise during compilation and optimization of quantum circuits.
We introduce a novel method based on Matrix Product Operators (MPOs) for determining the equivalence of quantum circuits.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Reducing Mid-Circuit Measurements via Probabilistic Circuits [0.13108652488669736]
Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms.
This work presents a static circuit optimization that can substitute some of these measurements with an equivalent circuit with randomized gate applications.
arXiv Detail & Related papers (2024-05-22T15:33:19Z) - A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Pauli Error Propagation-Based Gate Reschedulingfor Quantum Circuit Error
Mitigation [0.0]
Noisy Intermediate-Scale Quantum (NISQ) algorithms should be carefully designed to boost the output state fidelity.
In the presence of spatial variation in the error rate of the quantum gates, adjusting the circuit structure can play a major role in mitigating errors.
We propose advanced predictive techniques to project the success rate of the circuit, and develop a new compilation phase post-quantum circuit mapping to improve its reliability.
arXiv Detail & Related papers (2022-01-31T00:55:41Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.