論文の概要: Modern Views of Machine Learning for Precision Psychiatry
- arxiv url: http://arxiv.org/abs/2204.01607v1
- Date: Mon, 4 Apr 2022 16:03:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 17:59:08.606453
- Title: Modern Views of Machine Learning for Precision Psychiatry
- Title(参考訳): 精密精神医学のための機械学習の現代的展望
- Authors: Zhe Sage Chen, Prathamesh (Param) Kulkarni, Isaac R. Galatzer-Levy,
Benedetta Bigio, Carla Nasca, Yu Zhang
- Abstract要約: 機械学習(ML)と人工知能(AI)技術は、新しい精度精神医学の時代において、ますます重要な役割を担っている。
ML/AIと神経調節技術を組み合わせることで、臨床実践において説明可能な解決策を提供することができる。
先進的なウェアラブルとモバイル技術は、モバイルのメンタルヘルスにおけるデジタル表現のためのML/AIの役割も求めている。
- 参考スコア(独自算出の注目度): 2.9118852868341567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In light of the NIMH's Research Domain Criteria (RDoC), the advent of
functional neuroimaging, novel technologies and methods provide new
opportunities to develop precise and personalized prognosis and diagnosis of
mental disorders. Machine learning (ML) and artificial intelligence (AI)
technologies are playing an increasingly critical role in the new era of
precision psychiatry. Combining ML/AI with neuromodulation technologies can
potentially provide explainable solutions in clinical practice and effective
therapeutic treatment. Advanced wearable and mobile technologies also call for
the new role of ML/AI for digital phenotyping in mobile mental health. In this
review, we provide a comprehensive review of the ML methodologies and
applications by combining neuroimaging, neuromodulation, and advanced mobile
technologies in psychiatry practice. Additionally, we review the role of ML in
molecular phenotyping and cross-species biomarker identification in precision
psychiatry. We further discuss explainable AI (XAI) and causality testing in a
closed-human-in-the-loop manner, and highlight the ML potential in multimedia
information extraction and multimodal data fusion. Finally, we discuss
conceptual and practical challenges in precision psychiatry and highlight ML
opportunities in future research.
- Abstract(参考訳): NIMHのResearch Domain Criteria (RDoC) に照らして、機能的ニューロイメージングの出現、新しい技術と手法は、正確でパーソナライズされた予後と精神疾患の診断を開発する新しい機会を提供する。
機械学習(ML)と人工知能(AI)技術は、新しい精度精神医学の時代においてますます重要な役割を担っている。
ML/AIと神経調節技術を組み合わせることで、臨床および効果的な治療における説明可能な解決策を提供することができる。
先進的なウェアラブルとモバイル技術は、モバイルのメンタルヘルスにおけるデジタル表現のためのML/AIの役割も求めている。
本稿では,神経画像化,ニューロモジュレーション,高度移動技術を組み合わせた精神医学実践におけるml方法論と応用について概観する。
さらに, 精密精神医学における分子表現型および種間バイオマーカー同定におけるmlの役割について概説する。
我々はさらに、クローズド・ヒューマン・イン・ザ・ループ方式でAI(XAI)と因果性テストについて論じ、マルチメディア情報抽出とマルチモーダルデータ融合におけるMLの可能性を強調した。
最後に,精密精神医学における概念的,実践的な課題について議論し,今後の研究におけるMLの機会を強調する。
関連論文リスト
- Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges [15.765725731972983]
本稿では,人工知能を用いた骨転移解析の現状と進歩を概説する。
ML技術は、BM分析において有望な性能を達成することができ、臨床効率を改善し、時間とコストの制限に対処する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-04-30T14:49:03Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - An Introduction to Natural Language Processing Techniques and Framework
for Clinical Implementation in Radiation Oncology [1.2714439146420664]
放射線オンコロジー研究において,大規模言語モデル(LLM)を用いた最先端NLPアプリケーションを提案する。
LLMは、厳格な評価と検証を必要とする幻覚、偏見、倫理的違反など、多くの誤りを起こしやすい。
本論は, 臨床放射線腫瘍学におけるNLPモデルの開発と利用に関心がある研究者や臨床医に対して, 指導と洞察を提供することを目的とする。
論文 参考訳(メタデータ) (2023-11-03T19:32:35Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Artificial Intelligence for Dementia Research Methods Optimization [0.49050354212898845]
本稿では,認知症研究において最も頻繁に使用される機械学習アルゴリズムの概要を紹介する。
本稿では, 再現性と解釈可能性の問題と, 認知症研究の臨床的応用性への影響について論じる。
本稿では, 伝達学習, マルチタスク学習, 強化学習といった最先端の手法が, これらの課題を克服するためにどのように応用されるかを示す。
論文 参考訳(メタデータ) (2023-03-02T08:50:25Z) - Promises and pitfalls of deep neural networks in neuroimaging-based
psychiatric research [0.9449650062296824]
ディープニューラルネットワーク、特に畳み込みニューラルネットワークは、医療画像の強力なツールへと進化してきた。
ここでは、まず、方法論的鍵概念と結果の方法論的約束について紹介する。
神経画像に基づく精神医学研究における最近の応用を振り返り、現在の課題について論じる。
論文 参考訳(メタデータ) (2023-01-20T12:05:59Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z) - Machine Learning Applications on Neuroimaging for Diagnosis and
Prognosis of Epilepsy: A Review [6.185653026582807]
てんかんの診断と予後の文脈におけるニューロイメージングと機械学習の相互作用を強調した。
本稿では,2段階構成法とエンドツーエンド法という2つの手法を用いて,ニューロイメージングデータに機械学習手法を適用する。
セグメンテーション、ローカライゼーション、横方向化タスクなど、てんかん性画像における機械学習タスクの詳細なレビューを行う。
論文 参考訳(メタデータ) (2021-02-05T18:39:12Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。