論文の概要: Artificial Intelligence for Dementia Research Methods Optimization
- arxiv url: http://arxiv.org/abs/2303.01949v1
- Date: Thu, 2 Mar 2023 08:50:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 14:47:49.200367
- Title: Artificial Intelligence for Dementia Research Methods Optimization
- Title(参考訳): 認知症研究手法最適化のための人工知能
- Authors: Magda Bucholc, Charlotte James, Ahmad Al Khleifat, AmanPreet Badhwar,
Natasha Clarke, Amir Dehsarvi, Christopher R. Madan, Sarah J. Marzi, Cameron
Shand, Brian M. Schilder, Stefano Tamburin, Hanz M. Tantiangco, Ilianna
Lourida, David J. Llewellyn, Janice M. Ranson
- Abstract要約: 本稿では,認知症研究において最も頻繁に使用される機械学習アルゴリズムの概要を紹介する。
本稿では, 再現性と解釈可能性の問題と, 認知症研究の臨床的応用性への影響について論じる。
本稿では, 伝達学習, マルチタスク学習, 強化学習といった最先端の手法が, これらの課題を克服するためにどのように応用されるかを示す。
- 参考スコア(独自算出の注目度): 0.49050354212898845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introduction: Machine learning (ML) has been extremely successful in
identifying key features from high-dimensional datasets and executing
complicated tasks with human expert levels of accuracy or greater. Methods: We
summarize and critically evaluate current applications of ML in dementia
research and highlight directions for future research. Results: We present an
overview of ML algorithms most frequently used in dementia research and
highlight future opportunities for the use of ML in clinical practice,
experimental medicine, and clinical trials. We discuss issues of
reproducibility, replicability and interpretability and how these impact the
clinical applicability of dementia research. Finally, we give examples of how
state-of-the-art methods, such as transfer learning, multi-task learning, and
reinforcement learning, may be applied to overcome these issues and aid the
translation of research to clinical practice in the future. Discussion:
ML-based models hold great promise to advance our understanding of the
underlying causes and pathological mechanisms of dementia.
- Abstract(参考訳): 導入: 機械学習(ML)は、高次元データセットから重要な特徴を特定し、人間の専門家の精度以上の複雑なタスクを実行するのに非常に成功した。
方法:認知症研究におけるMLの現在の応用を要約し,批判的に評価し,今後の研究の方向性を明らかにする。
結果: 認知症研究において最も頻繁に使用されるMLアルゴリズムの概要を述べるとともに, 臨床, 実験, 臨床治験におけるMLの活用の可能性を明らかにする。
本稿では,再現性,複製性,解釈性の問題と,認知症研究の臨床的応用性への影響について論じる。
最後に, トランスファーラーニング, マルチタスクラーニング, 強化ラーニングといった最先端の手法を応用して, これらの課題を克服し, 今後の臨床実践への研究の翻訳を支援する方法の例を示す。
考察:MLに基づくモデルは、認知症の根本原因と病態メカニズムの理解を深める大きな可能性を秘めている。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - Addressing the Gaps in Early Dementia Detection: A Path Towards Enhanced Diagnostic Models through Machine Learning [0.0]
この急激な世界的な高齢化傾向は、アルツハイマー病を含む認知症患者の増加につながっている。
認知テスト、ニューロイメージング、バイオマーカー分析といった従来の診断技術は、感度、アクセシビリティ、コストに重大な制限に直面している。
本研究は、早期認知症検出を促進するための変革的アプローチとして、機械学習(ML)の可能性を探るものである。
論文 参考訳(メタデータ) (2024-09-05T00:52:59Z) - Artificial Intelligence in Bone Metastasis Analysis: Current Advancements, Opportunities and Challenges [15.765725731972983]
本稿では,人工知能を用いた骨転移解析の現状と進歩を概説する。
ML技術は、BM分析において有望な性能を達成することができ、臨床効率を改善し、時間とコストの制限に対処する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-04-30T14:49:03Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
本研究では、時系列医療指標における心拍データの伝達を改善するための機械学習アルゴリズムの能力について検討する。
検討中の要因は、アルゴリズムの利用、対象とする疾患の種類、採用されるデータの種類、応用、評価指標などである。
論文 参考訳(メタデータ) (2023-10-25T20:28:22Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - A survey of machine learning techniques in medical applications [0.0]
医療データの指数的な成長は手動分析の能力を超え、自動データ分析と処理への関心が高まる。
人間の介入を最小限に抑えたデータから学習できるMLアルゴリズムは、医療データ分析と解釈に特に適している。
MLの大きな利点の1つは、教師あり学習に必要なラベル付きトレーニングデータを収集するコストの削減である。
論文 参考訳(メタデータ) (2023-02-26T08:43:08Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Causal Machine Learning for Healthcare and Precision Medicine [16.846051073534966]
因果機械学習(CML)は、医療で人気が高まっている。
臨床意思決定支援システムの様々な側面に因果推論を組み込む方法について検討する。
論文 参考訳(メタデータ) (2022-05-23T15:45:21Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。