Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly
Detection?
- URL: http://arxiv.org/abs/2204.01637v1
- Date: Mon, 4 Apr 2022 16:32:49 GMT
- Title: Do Deep Neural Networks Contribute to Multivariate Time Series Anomaly
Detection?
- Authors: Julien Audibert and Pietro Michiardi and Fr\'ed\'eric Guyard and
S\'ebastien Marti and Maria A. Zuluaga
- Abstract summary: We study the anomaly detection performance of sixteen conventional, machine learning-based and, deep neural network approaches.
By analyzing and comparing the performance of each of the sixteen methods, we show that no family of methods outperforms the others.
- Score: 12.419938668514042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in time series is a complex task that has been widely
studied. In recent years, the ability of unsupervised anomaly detection
algorithms has received much attention. This trend has led researchers to
compare only learning-based methods in their articles, abandoning some more
conventional approaches. As a result, the community in this field has been
encouraged to propose increasingly complex learning-based models mainly based
on deep neural networks. To our knowledge, there are no comparative studies
between conventional, machine learning-based and, deep neural network methods
for the detection of anomalies in multivariate time series. In this work, we
study the anomaly detection performance of sixteen conventional, machine
learning-based and, deep neural network approaches on five real-world open
datasets. By analyzing and comparing the performance of each of the sixteen
methods, we show that no family of methods outperforms the others. Therefore,
we encourage the community to reincorporate the three categories of methods in
the anomaly detection in multivariate time series benchmarks.
Related papers
- Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection [0.0]
It is unclear how the use of different types of RNNs available in various deep learning frameworks affects the performance of these anomaly detection approaches.
We reviewed several state-of-the-art approaches and implemented a representative anomaly detection approach using well-known RNN variants.
A comprehensive evaluation is then conducted to analyze the performance of each implementation across real-world, open-source time series datasets.
arXiv Detail & Related papers (2024-07-26T00:38:51Z) - Can Tree Based Approaches Surpass Deep Learning in Anomaly Detection? A
Benchmarking Study [0.6291443816903801]
This paper evaluates a diverse array of machine learning-based anomaly detection algorithms.
The paper contributes significantly by conducting an unbiased comparison of various anomaly detection algorithms.
arXiv Detail & Related papers (2024-02-11T19:12:51Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - GCN-based Multi-task Representation Learning for Anomaly Detection in
Attributed Networks [31.565081319419225]
Anomaly detection in attributed networks has received a considerable attention in recent years due to its applications in a wide range of domains such as finance, network security, and medicine.
Traditional approaches cannot be adopted on attributed networks' settings to solve the problem of anomaly detection.
We propose a new architecture on anomaly detection using multi-task learning.
arXiv Detail & Related papers (2022-07-08T04:54:53Z) - Multivariate Anomaly Detection based on Prediction Intervals Constructed
using Deep Learning [0.0]
We benchmark our approach against the oft-preferred well-established statistical models.
We focus on three deep learning architectures, namely, cascaded neural networks, reservoir computing and long short-term memory recurrent neural networks.
arXiv Detail & Related papers (2021-10-07T12:34:31Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
We investigate the effect of adversarial machine learning on the bias and variance of a trained deep neural network.
Our analysis sheds light on why the deep neural networks have poor performance under adversarial perturbation.
We introduce a new adversarial machine learning algorithm with lower computational complexity than well-known adversarial machine learning strategies.
arXiv Detail & Related papers (2020-08-01T00:58:54Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
Anomaly detection for time-series data has been an important research field for a long time.
Recent years an increasing number of machine learning algorithms have been developed to detect anomalies on time-series.
Researchers tried to improve these techniques using (deep) neural networks.
arXiv Detail & Related papers (2020-04-01T13:22:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.