Linear Hashing with $\ell_\infty$ guarantees and two-sided Kakeya bounds
- URL: http://arxiv.org/abs/2204.01665v3
- Date: Fri, 29 Mar 2024 17:27:03 GMT
- Title: Linear Hashing with $\ell_\infty$ guarantees and two-sided Kakeya bounds
- Authors: Manik Dhar, Zeev Dvir,
- Abstract summary: We show that a randomly chosen linear map over a finite field gives a good hash function in the $ell_infty$ sense.
By known bounds from the load balancing literature [RS98], our results are tight and show that linear functions hash as well as trully random function up to a constant factor in the entropy loss.
- Score: 0.8594140167290096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that a randomly chosen linear map over a finite field gives a good hash function in the $\ell_\infty$ sense. More concretely, consider a set $S \subset \mathbb{F}_q^n$ and a randomly chosen linear map $L : \mathbb{F}_q^n \to \mathbb{F}_q^t$ with $q^t$ taken to be sufficiently smaller than $ |S|$. Let $U_S$ denote a random variable distributed uniformly on $S$. Our main theorem shows that, with high probability over the choice of $L$, the random variable $L(U_S)$ is close to uniform in the $\ell_\infty$ norm. In other words, {\em every} element in the range $\mathbb{F}_q^t$ has about the same number of elements in $S$ mapped to it. This complements the widely-used Leftover Hash Lemma (LHL) which proves the analog statement under the statistical, or $\ell_1$, distance (for a richer class of functions) as well as prior work on the expected largest 'bucket size' in linear hash functions [ADMPT99]. By known bounds from the load balancing literature [RS98], our results are tight and show that linear functions hash as well as trully random function up to a constant factor in the entropy loss. Our proof leverages a connection between linear hashing and the finite field Kakeya problem and extends some of the tools developed in this area, in particular the polynomial method.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Rényi divergence-based uniformity guarantees for $k$-universal hash functions [59.90381090395222]
Universal hash functions map the output of a source to random strings over a finite alphabet.
We show that it is possible to distill random bits that are nearly uniform, as measured by min-entropy.
arXiv Detail & Related papers (2024-10-21T19:37:35Z) - Monge-Kantorovich Fitting With Sobolev Budgets [6.748324975906262]
We quantify the performance of the approximation with the Monge-Kantorovich $p$-cost.
We may then reform the problem as minimizing a functional $mathscrJ_p(f)$ under a constraint on the Sobolev budget.
arXiv Detail & Related papers (2024-09-25T01:30:16Z) - Learning linear dynamical systems under convex constraints [4.4351901934764975]
We consider the problem of identification of linear dynamical systems from $T$ samples of a single trajectory.
$A*$ can be reliably estimated for values $T$ smaller than what is needed for unconstrained setting.
arXiv Detail & Related papers (2023-03-27T11:49:40Z) - Unique Games hardness of Quantum Max-Cut, and a conjectured
vector-valued Borell's inequality [6.621324975749854]
We show that the noise stability of a function $f:mathbbRn to -1, 1$ is the expected value of $f(boldsymbolx) cdot f(boldsymboly)$.
We conjecture that the expected value of $langle f(boldsymbolx), f(boldsymboly)rangle$ is minimized by the function $f(x) = x_leq k / Vert x_leq k /
arXiv Detail & Related papers (2021-11-01T20:45:42Z) - On the Self-Penalization Phenomenon in Feature Selection [69.16452769334367]
We describe an implicit sparsity-inducing mechanism based on over a family of kernels.
As an application, we use this sparsity-inducing mechanism to build algorithms consistent for feature selection.
arXiv Detail & Related papers (2021-10-12T09:36:41Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.