Monge-Kantorovich Fitting With Sobolev Budgets
- URL: http://arxiv.org/abs/2409.16541v1
- Date: Wed, 25 Sep 2024 01:30:16 GMT
- Title: Monge-Kantorovich Fitting With Sobolev Budgets
- Authors: Forest Kobayashi, Jonathan Hayase, Young-Heon Kim,
- Abstract summary: We quantify the performance of the approximation with the Monge-Kantorovich $p$-cost.
We may then reform the problem as minimizing a functional $mathscrJ_p(f)$ under a constraint on the Sobolev budget.
- Score: 6.748324975906262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of finding the ``best'' approximation of an $n$-dimensional probability measure $\rho$ using a measure $\nu$ whose support is parametrized by $f : \mathbb{R}^m \to \mathbb{R}^n$ where $m < n$. We quantify the performance of the approximation with the Monge-Kantorovich $p$-cost (also called the Wasserstein $p$-cost) $\mathbb{W}_p^p(\rho, \nu)$, and constrain the complexity of the approximation by bounding the $W^{k,q}$ Sobolev norm of $f$, which acts as a ``budget.'' We may then reformulate the problem as minimizing a functional $\mathscr{J}_p(f)$ under a constraint on the Sobolev budget. We treat general $k \geq 1$ for the Sobolev differentiability order (though $q, m$ are chosen to restrict $W^{k,q}$ to the supercritical regime $k q > m$ to guarantee existence of optimizers). The problem is closely related to (but distinct from) principal curves with length constraints when $m=1, k = 1$ and smoothing splines when $k > 1$. New aspects and challenges arise from the higher order differentiability condition. We study the gradient of $\mathscr{J}_p$, which is given by a vector field along $f$ we call the barycenter field. We use it to construct improvements to a given $f$, which gives a nontrivial (almost) strict monotonicty relation between the functional $\mathscr{J}_p$ and the Sobolev budget. We also provide a natural discretization scheme and establish its consistency. We use this scheme to model a generative learning task; in particular, we demonstrate that adding a constraint like ours as a soft penalty yields substantial improvement in training a GAN to produce images of handwritten digits, with performance competitive with weight-decay.
Related papers
- Conditional regression for the Nonlinear Single-Variable Model [4.565636963872865]
We consider a model $F(X):=f(Pi_gamma):mathbbRdto[0,rmlen_gamma]$ where $Pi_gamma: [0,rmlen_gamma]tomathbbRd$ and $f:[0,rmlen_gamma]tomathbbR1$.
We propose a nonparametric estimator, based on conditional regression, and show that it can achieve the $one$-dimensional optimal min-max rate
arXiv Detail & Related papers (2024-11-14T18:53:51Z) - A Proximal Modified Quasi-Newton Method for Nonsmooth Regularized Optimization [0.7373617024876725]
Lipschitz-of-$nabla f$.
$mathcalS_k|p$.
$mathcalS_k|p$.
$nabla f$.
$mathcalS_k|p$.
arXiv Detail & Related papers (2024-09-28T18:16:32Z) - Restless Linear Bandits [5.00389879175348]
It is assumed that there exists an unknown $mathbbRd$-valued stationary $varphi$-mixing sequence of parameters $(theta_t,t in mathbbN)$ which gives rise to pay-offs.
An optimistic algorithm, called LinMix-UCB, is proposed for the case where $theta_t$ has an exponential mixing rate.
arXiv Detail & Related papers (2024-05-17T14:37:39Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Minimax Optimal Regression over Sobolev Spaces via Laplacian
Regularization on Neighborhood Graphs [25.597646488273558]
We study the statistical properties of Laplacian smoothing, a graph-based approach to nonparametric regression.
We prove that Laplacian smoothing is manifold-adaptive.
arXiv Detail & Related papers (2021-06-03T01:20:41Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Convergence of Sparse Variational Inference in Gaussian Processes
Regression [29.636483122130027]
We show that a method with an overall computational cost of $mathcalO(log N)2D(loglog N)2)$ can be used to perform inference.
arXiv Detail & Related papers (2020-08-01T19:23:34Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.