Continuously Discovering Novel Strategies via Reward-Switching Policy
Optimization
- URL: http://arxiv.org/abs/2204.02246v1
- Date: Mon, 4 Apr 2022 12:38:58 GMT
- Title: Continuously Discovering Novel Strategies via Reward-Switching Policy
Optimization
- Authors: Zihan Zhou, Wei Fu, Bingliang Zhang, Yi Wu
- Abstract summary: Reward-Switching Policy Optimization (RSPO)
RSPO is a paradigm to discover diverse strategies in complex RL environments by iteratively finding novel policies that are both locally optimal and sufficiently different from existing ones.
Experiments show that RSPO is able to discover a wide spectrum of strategies in a variety of domains, ranging from single-agent particle-world tasks and MuJoCo continuous control to multi-agent stag-hunt games and StarCraftII challenges.
- Score: 9.456388509414046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Reward-Switching Policy Optimization (RSPO), a paradigm to
discover diverse strategies in complex RL environments by iteratively finding
novel policies that are both locally optimal and sufficiently different from
existing ones. To encourage the learning policy to consistently converge
towards a previously undiscovered local optimum, RSPO switches between
extrinsic and intrinsic rewards via a trajectory-based novelty measurement
during the optimization process. When a sampled trajectory is sufficiently
distinct, RSPO performs standard policy optimization with extrinsic rewards.
For trajectories with high likelihood under existing policies, RSPO utilizes an
intrinsic diversity reward to promote exploration. Experiments show that RSPO
is able to discover a wide spectrum of strategies in a variety of domains,
ranging from single-agent particle-world tasks and MuJoCo continuous control to
multi-agent stag-hunt games and StarCraftII challenges.
Related papers
- OMPO: A Unified Framework for RL under Policy and Dynamics Shifts [42.57662196581823]
Training reinforcement learning policies using environment interaction data collected from varying policies or dynamics presents a fundamental challenge.
Existing works often overlook the distribution discrepancies induced by policy or dynamics shifts, or rely on specialized algorithms with task priors.
In this paper, we identify a unified strategy for online RL policy learning under diverse settings of policy and dynamics shifts: transition occupancy matching.
arXiv Detail & Related papers (2024-05-29T13:36:36Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
Reinforcement learning with continuous state and action spaces remains one of the most challenging problems within the field.
We propose the first differential RL framework that can handle settings with limited training samples and short-length episodes.
arXiv Detail & Related papers (2024-04-24T03:11:12Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
We propose Diverse Policy Optimization (DPO) to model the policies in structured action space as the energy-based models (EBM)
A novel and powerful generative model, GFlowNet, is introduced as the efficient, diverse EBM-based policy sampler.
Experiments on ATSC and Battle benchmarks demonstrate that DPO can efficiently discover surprisingly diverse policies.
arXiv Detail & Related papers (2023-02-23T10:48:09Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - CAMEO: Curiosity Augmented Metropolis for Exploratory Optimal Policies [62.39667564455059]
We consider and study a distribution of optimal policies.
In experimental simulations we show that CAMEO indeed obtains policies that all solve classic control problems.
We further show that the different policies we sample present different risk profiles, corresponding to interesting practical applications in interpretability.
arXiv Detail & Related papers (2022-05-19T09:48:56Z) - Discovering Diverse Nearly Optimal Policies withSuccessor Features [30.144946007098852]
In reinforcement learning, a set of diverse policies can be useful for exploration, transfer, hierarchy, and robustness.
We propose Diverse Successive Policies, a method for discovering policies that are diverse in the space of Successor Features.
arXiv Detail & Related papers (2021-06-01T17:56:13Z) - Discovery of Options via Meta-Learned Subgoals [59.2160583043938]
Temporal abstractions in the form of options have been shown to help reinforcement learning (RL) agents learn faster.
We introduce a novel meta-gradient approach for discovering useful options in multi-task RL environments.
arXiv Detail & Related papers (2021-02-12T19:50:40Z) - Policy Optimization as Online Learning with Mediator Feedback [46.845765216238135]
Policy Optimization (PO) is a widely used approach to address continuous control tasks.
In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space.
We propose an algorithm, RANDomized-exploration policy Optimization via Multiple Importance Sampling with Truncation (RIST) for regret minimization.
arXiv Detail & Related papers (2020-12-15T11:34:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.