Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance
- URL: http://arxiv.org/abs/2204.02320v1
- Date: Tue, 5 Apr 2022 16:26:22 GMT
- Title: Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance
- Authors: Yueh-Hua Wu, Jiashun Wang, Xiaolong Wang
- Abstract summary: Dexterous manipulation with a multi-finger hand is one of the most challenging problems in robotics.
Recent progress in imitation learning has largely improved the sample efficiency compared to Reinforcement Learning.
We propose to learn dexterous manipulation using large-scale demonstrations with diverse 3D objects in a category.
- Score: 11.060931225148936
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Dexterous manipulation with a multi-finger hand is one of the most
challenging problems in robotics. While recent progress in imitation learning
has largely improved the sample efficiency compared to Reinforcement Learning,
the learned policy can hardly generalize to manipulate novel objects, given
limited expert demonstrations. In this paper, we propose to learn dexterous
manipulation using large-scale demonstrations with diverse 3D objects in a
category, which are generated from a human grasp affordance model. This
generalizes the policy to novel object instances within the same category. To
train the policy, we propose a novel imitation learning objective jointly with
a geometric representation learning objective using our demonstrations. By
experimenting with relocating diverse objects in simulation, we show that our
approach outperforms baselines with a large margin when manipulating novel
objects. We also ablate the importance on 3D object representation learning for
manipulation. We include videos, code, and additional information on the
project website - https://kristery.github.io/ILAD/ .
Related papers
- Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects [18.342569823885864]
Teacher-Augmented Policy Gradient (TAPG) is a novel two-stage learning framework that synergizes reinforcement learning and policy distillation.
TAPG facilitates guided, yet adaptive, learning of a sensorimotor policy, based on object segmentation.
Our trained policies adeptly grasp a wide variety of objects from cluttered scenarios in simulation and the real world based on human-understandable prompts.
arXiv Detail & Related papers (2024-03-15T10:48:16Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - One-shot Imitation Learning via Interaction Warping [32.5466340846254]
We propose a new method, Interaction Warping, for learning SE(3) robotic manipulation policies from a single demonstration.
We infer the 3D mesh of each object in the environment using shape warping, a technique for aligning point clouds across object instances.
We show successful one-shot imitation learning on three simulated and real-world object re-arrangement tasks.
arXiv Detail & Related papers (2023-06-21T17:26:11Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task
Learning [108.08083976908195]
We show that policies learned by existing reinforcement learning algorithms can in fact be generalist.
We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects.
Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms single-object specialist policies.
arXiv Detail & Related papers (2021-11-04T17:59:56Z) - Learning Object Manipulation Skills via Approximate State Estimation
from Real Videos [47.958512470724926]
Humans are adept at learning new tasks by watching a few instructional videos.
On the other hand, robots that learn new actions either require a lot of effort through trial and error, or use expert demonstrations that are challenging to obtain.
In this paper, we explore a method that facilitates learning object manipulation skills directly from videos.
arXiv Detail & Related papers (2020-11-13T08:53:47Z) - Learning Dexterous Grasping with Object-Centric Visual Affordances [86.49357517864937]
Dexterous robotic hands are appealing for their agility and human-like morphology.
We introduce an approach for learning dexterous grasping.
Our key idea is to embed an object-centric visual affordance model within a deep reinforcement learning loop.
arXiv Detail & Related papers (2020-09-03T04:00:40Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.