Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
- URL: http://arxiv.org/abs/2403.10187v1
- Date: Fri, 15 Mar 2024 10:48:16 GMT
- Title: Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
- Authors: Malte Mosbach, Sven Behnke,
- Abstract summary: Teacher-Augmented Policy Gradient (TAPG) is a novel two-stage learning framework that synergizes reinforcement learning and policy distillation.
TAPG facilitates guided, yet adaptive, learning of a sensorimotor policy, based on object segmentation.
Our trained policies adeptly grasp a wide variety of objects from cluttered scenarios in simulation and the real world based on human-understandable prompts.
- Score: 18.342569823885864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, and the complex interplay between the two. In this work, we present Teacher-Augmented Policy Gradient (TAPG), a novel two-stage learning framework that synergizes reinforcement learning and policy distillation. After training a teacher policy to master the motor control based on object pose information, TAPG facilitates guided, yet adaptive, learning of a sensorimotor policy, based on object segmentation. We zero-shot transfer from simulation to a real robot by using Segment Anything Model for promptable object segmentation. Our trained policies adeptly grasp a wide variety of objects from cluttered scenarios in simulation and the real world based on human-understandable prompts. Furthermore, we show robust zero-shot transfer to novel objects. Videos of our experiments are available at \url{https://maltemosbach.github.io/grasp_anything}.
Related papers
- DITTO: Demonstration Imitation by Trajectory Transformation [31.930923345163087]
In this work, we address the problem of one-shot imitation from a single human demonstration, given by an RGB-D video recording.
We propose a two-stage process. In the first stage we extract the demonstration trajectory offline. This entails segmenting manipulated objects and determining their relative motion in relation to secondary objects such as containers.
In the online trajectory generation stage, we first re-detect all objects, then warp the demonstration trajectory to the current scene and execute it on the robot.
arXiv Detail & Related papers (2024-03-22T13:46:51Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies [29.998917158604694]
We present a reinforcement learning framework that learns the interactive grasping of various geometrically distinct real-world objects.
Videos of learned interactive policies are available at https://maltemosbach.org/io/geometry_aware_grasping_policies.
arXiv Detail & Related papers (2022-11-20T11:47:33Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance [11.060931225148936]
Dexterous manipulation with a multi-finger hand is one of the most challenging problems in robotics.
Recent progress in imitation learning has largely improved the sample efficiency compared to Reinforcement Learning.
We propose to learn dexterous manipulation using large-scale demonstrations with diverse 3D objects in a category.
arXiv Detail & Related papers (2022-04-05T16:26:22Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
We focus on the problem of visual non-prehensile planar manipulation.
We propose a novel architecture that combines video decoding neural models with priors from contact mechanics.
We find that our modular and fully differentiable architecture performs better than learning-only methods on unseen objects and motions.
arXiv Detail & Related papers (2021-11-09T18:39:45Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
We present a framework for learning multi-arm manipulation of articulated objects.
Our framework includes a variational generative model that learns contact point distribution over object rigid parts for each robot arm.
arXiv Detail & Related papers (2021-11-07T02:31:09Z) - Learning Dexterous Grasping with Object-Centric Visual Affordances [86.49357517864937]
Dexterous robotic hands are appealing for their agility and human-like morphology.
We introduce an approach for learning dexterous grasping.
Our key idea is to embed an object-centric visual affordance model within a deep reinforcement learning loop.
arXiv Detail & Related papers (2020-09-03T04:00:40Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.