ArticuBot: Learning Universal Articulated Object Manipulation Policy via Large Scale Simulation
- URL: http://arxiv.org/abs/2503.03045v1
- Date: Tue, 04 Mar 2025 22:51:50 GMT
- Title: ArticuBot: Learning Universal Articulated Object Manipulation Policy via Large Scale Simulation
- Authors: Yufei Wang, Ziyu Wang, Mino Nakura, Pratik Bhowal, Chia-Liang Kuo, Yi-Ting Chen, Zackory Erickson, David Held,
- Abstract summary: Articubot is a system that learns a policy to open diverse categories of unseen articulated objects in the real world.<n>We show that our learned policy can zero-shot transfer to three different real robot settings.
- Score: 22.43711565969091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents ArticuBot, in which a single learned policy enables a robotics system to open diverse categories of unseen articulated objects in the real world. This task has long been challenging for robotics due to the large variations in the geometry, size, and articulation types of such objects. Our system, Articubot, consists of three parts: generating a large number of demonstrations in physics-based simulation, distilling all generated demonstrations into a point cloud-based neural policy via imitation learning, and performing zero-shot sim2real transfer to real robotics systems. Utilizing sampling-based grasping and motion planning, our demonstration generalization pipeline is fast and effective, generating a total of 42.3k demonstrations over 322 training articulated objects. For policy learning, we propose a novel hierarchical policy representation, in which the high-level policy learns the sub-goal for the end-effector, and the low-level policy learns how to move the end-effector conditioned on the predicted goal. We demonstrate that this hierarchical approach achieves much better object-level generalization compared to the non-hierarchical version. We further propose a novel weighted displacement model for the high-level policy that grounds the prediction into the existing 3D structure of the scene, outperforming alternative policy representations. We show that our learned policy can zero-shot transfer to three different real robot settings: a fixed table-top Franka arm across two different labs, and an X-Arm on a mobile base, opening multiple unseen articulated objects across two labs, real lounges, and kitchens. Videos and code can be found on our project website: https://articubot.github.io/.
Related papers
- FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation [9.292150395779332]
We propose a novel framework for learning object-centric manipulation policies in force space.
Our method simplifies the action space, reduces unnecessary exploration, and decreases simulation overhead.
Our evaluations demonstrate that the method significantly outperforms baselines.
arXiv Detail & Related papers (2025-03-17T17:49:47Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
We propose a framework towards Robust Perception and Manipulation for Articulated Objects ( RPMArt)
RPMArt learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud.
We introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer.
arXiv Detail & Related papers (2024-03-24T05:55:39Z) - Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects [18.342569823885864]
Teacher-Augmented Policy Gradient (TAPG) is a novel two-stage learning framework that synergizes reinforcement learning and policy distillation.
TAPG facilitates guided, yet adaptive, learning of a sensorimotor policy, based on object segmentation.
Our trained policies adeptly grasp a wide variety of objects from cluttered scenarios in simulation and the real world based on human-understandable prompts.
arXiv Detail & Related papers (2024-03-15T10:48:16Z) - Learning Generalizable Manipulation Policies with Object-Centric 3D
Representations [65.55352131167213]
GROOT is an imitation learning method for learning robust policies with object-centric and 3D priors.
It builds policies that generalize beyond their initial training conditions for vision-based manipulation.
GROOT's performance excels in generalization over background changes, camera viewpoint shifts, and the presence of new object instances.
arXiv Detail & Related papers (2023-10-22T18:51:45Z) - One-shot Imitation Learning via Interaction Warping [32.5466340846254]
We propose a new method, Interaction Warping, for learning SE(3) robotic manipulation policies from a single demonstration.
We infer the 3D mesh of each object in the environment using shape warping, a technique for aligning point clouds across object instances.
We show successful one-shot imitation learning on three simulated and real-world object re-arrangement tasks.
arXiv Detail & Related papers (2023-06-21T17:26:11Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - DexTransfer: Real World Multi-fingered Dexterous Grasping with Minimal
Human Demonstrations [51.87067543670535]
We propose a robot-learning system that can take a small number of human demonstrations and learn to grasp unseen object poses.
We train a dexterous grasping policy that takes the point clouds of the object as input and predicts continuous actions to grasp objects from different initial robot states.
The policy learned from our dataset can generalize well on unseen object poses in both simulation and the real world.
arXiv Detail & Related papers (2022-09-28T17:51:49Z) - FlowBot3D: Learning 3D Articulation Flow to Manipulate Articulated Objects [14.034256001448574]
We propose a vision-based system that learns to predict the potential motions of the parts of a variety of articulated objects.
We deploy an analytical motion planner based on this vector field to achieve a policy that yields maximum articulation.
Results show that our system achieves state-of-the-art performance in both simulated and real-world experiments.
arXiv Detail & Related papers (2022-05-09T15:35:33Z) - Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance [11.060931225148936]
Dexterous manipulation with a multi-finger hand is one of the most challenging problems in robotics.
Recent progress in imitation learning has largely improved the sample efficiency compared to Reinforcement Learning.
We propose to learn dexterous manipulation using large-scale demonstrations with diverse 3D objects in a category.
arXiv Detail & Related papers (2022-04-05T16:26:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.