Higher order moments dynamics for some multimode quantum master
equations
- URL: http://arxiv.org/abs/2204.02502v2
- Date: Mon, 18 Jul 2022 05:38:53 GMT
- Title: Higher order moments dynamics for some multimode quantum master
equations
- Authors: Iu. A. Nosal and A. E. Teretenkov
- Abstract summary: We derive Heisenberg equations for arbitrary high order moments of creation and annihilation operators.
We also derive similar equations for the case of the quantum master equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive Heisenberg equations for arbitrary high order moments of creation
and annihilation operators in the case of the quantum master equation with a
multimode generator which is quadratic in creation and annihilation operators
and obtain their solutions. Based on them we also derive similar equations for
the case of the quantum master equation, which occur after averaging the
dynamics with a quadratic generator with respect to the classical Poisson
process. This allows us to show that dynamics of arbitrary finite-order moments
of creation and annihilation operators is fully defined by finite number of
linear differential equations in this case.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Solving coupled Non-linear Schrödinger Equations via Quantum Imaginary Time Evolution [0.0]
We present a quantum imaginary time evolution (ITE) algorithm as a solution to such equations in the case of nuclear Hartree-Fock equations.
Under a simplified Skyrme interaction model, we calculate the ground state energy of an oxygen-16 nucleus and demonstrate that the result is in agreement with the classical ITE algorithm.
arXiv Detail & Related papers (2024-02-02T18:41:04Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Quantum-based solution of time-dependent complex Riccati equations [0.0]
We show a time-dependent complex Riccati equation (TDCRE) as the solution of the time evolution operator (TEO) of quantum systems.
The inherited symmetries of quantum systems can be recognized by a simple inspection of the TDCRE.
As an application, but also as a consistency test, we compare our solution with the analytic one for the Bloch-Riccati equation.
arXiv Detail & Related papers (2022-09-07T23:52:04Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Open quantum dynamics with singularities: Master equations and degree of
non-Markovianity [0.0]
First-order, time-local, homogeneous master equations fail to describe dynamics beyond the singular point.
We propose a reformulation in terms of higher-order differential equations to retain time-locality.
We also present a detailed study of the central spin model and we propose the average rate of information inflow in non-Markovian processes.
arXiv Detail & Related papers (2021-05-26T12:06:34Z) - QuantumCumulants.jl: A Julia framework for generalized mean-field
equations in open quantum systems [0.0]
We present an open-source framework that fully automizes equations of motion of operators up to a desired order.
After reviewing the theory we present the framework and showcase its usefulness in a few example problems.
arXiv Detail & Related papers (2021-05-04T08:53:02Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Basic properties of a mean field laser equation [0.0]
We study the non-linear quantum master equation describing a laser under the mean field approximation.
We establish the existence and uniqueness of the regular solution to the non-linear operator equation.
We obtain rigorously the Maxwell-Bloch equations from the mean field laser equation.
arXiv Detail & Related papers (2020-06-19T18:51:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.