Solving integer multi-objective optimization problems using TOPSIS,
Differential Evolution and Tabu Search
- URL: http://arxiv.org/abs/2204.02522v1
- Date: Tue, 5 Apr 2022 23:59:33 GMT
- Title: Solving integer multi-objective optimization problems using TOPSIS,
Differential Evolution and Tabu Search
- Authors: Renato A. Krohling and Erick R. F. A. Schneider
- Abstract summary: This paper presents a method to solve nonlinear integer multiobjective optimization problems.
First, the problem is formulated using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
Next, the Differential Evolution (DE) algorithm in its three versions (standard DE, DEGL, DEGL) are used as DE best and DEGL.
Since the solutions found by the DE algorithms are continuous, the Tabu Search (TS) algorithm is employed to find integer solutions during the optimization process.
- Score: 4.213427823201119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a method to solve non-linear integer multiobjective
optimization problems. First the problem is formulated using the Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS). Next, the
Differential Evolution (DE) algorithm in its three versions (standard DE, DE
best and DEGL) are used as optimizer. Since the solutions found by the DE
algorithms are continuous, the Tabu Search (TS) algorithm is employed to find
integer solutions during the optimization process. Experimental results show
the effectiveness of the proposed method.
Related papers
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
Sequentially solving similar optimization problems under strict runtime constraints is essential for many applications.
We propose learning to predict emphmultiple diverse initial solutions given parameters that define the problem instance.
We find significant and consistent improvement with our method across all evaluation settings and demonstrate that it efficiently scales with the number of initial solutions required.
arXiv Detail & Related papers (2024-11-04T15:17:19Z) - Effective anytime algorithm for multiobjective combinatorial optimization problems [3.2061579211871383]
A set of efficient solutions that are well-spread in the objective space is preferred to provide the decision maker with a great variety of solutions.
We propose a new exact algorithm for multiobjective optimization combining three novel ideas to enhance the anytime behavior.
arXiv Detail & Related papers (2024-02-06T11:53:44Z) - Dynamic Incremental Optimization for Best Subset Selection [15.8362578568708]
Best subset selection is considered the gold standard for many learning problems.
An efficient subset-dual algorithm is developed based on the primal and dual problem structures.
arXiv Detail & Related papers (2024-02-04T02:26:40Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
Most of the real-world problems are multimodal in nature that consists of multiple optimum values.
Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable.
We have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs.
arXiv Detail & Related papers (2022-08-23T16:18:27Z) - Best Subset Selection with Efficient Primal-Dual Algorithm [24.568094642425837]
Best subset selection is considered the gold standard' for many learning problems.
In this paper, we investigate the dual forms of a family of $ell$-regularized problems.
An efficient primal-dual method has been developed based on the primal and dual problem structures.
arXiv Detail & Related papers (2022-07-05T14:07:52Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.