Dynamic Incremental Optimization for Best Subset Selection
- URL: http://arxiv.org/abs/2402.02322v3
- Date: Tue, 4 Jun 2024 05:57:16 GMT
- Title: Dynamic Incremental Optimization for Best Subset Selection
- Authors: Shaogang Ren, Xiaoning Qian,
- Abstract summary: Best subset selection is considered the gold standard for many learning problems.
An efficient subset-dual algorithm is developed based on the primal and dual problem structures.
- Score: 15.8362578568708
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Best subset selection is considered the `gold standard' for many sparse learning problems. A variety of optimization techniques have been proposed to attack this non-smooth non-convex problem. In this paper, we investigate the dual forms of a family of $\ell_0$-regularized problems. An efficient primal-dual algorithm is developed based on the primal and dual problem structures. By leveraging the dual range estimation along with the incremental strategy, our algorithm potentially reduces redundant computation and improves the solutions of best subset selection. Theoretical analysis and experiments on synthetic and real-world datasets validate the efficiency and statistical properties of the proposed solutions.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
This paper proposes a unified paradigm, which combines the kernelized autoncoding evolutionary search and the centriod-based prediction.
The proposed method is compared with five state-of-the-art algorithms on a number of complex benchmark problems.
arXiv Detail & Related papers (2023-12-02T00:24:22Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Best Subset Selection with Efficient Primal-Dual Algorithm [24.568094642425837]
Best subset selection is considered the gold standard' for many learning problems.
In this paper, we investigate the dual forms of a family of $ell$-regularized problems.
An efficient primal-dual method has been developed based on the primal and dual problem structures.
arXiv Detail & Related papers (2022-07-05T14:07:52Z) - Solving integer multi-objective optimization problems using TOPSIS,
Differential Evolution and Tabu Search [4.213427823201119]
This paper presents a method to solve nonlinear integer multiobjective optimization problems.
First, the problem is formulated using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
Next, the Differential Evolution (DE) algorithm in its three versions (standard DE, DEGL, DEGL) are used as DE best and DEGL.
Since the solutions found by the DE algorithms are continuous, the Tabu Search (TS) algorithm is employed to find integer solutions during the optimization process.
arXiv Detail & Related papers (2022-04-05T23:59:33Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Meta-learning based Alternating Minimization Algorithm for Non-convex
Optimization [9.774392581946108]
We propose a novel solution for challenging non-problems of multiple variables.
Our proposed approach is able to achieve effective iterations in cases while other methods would typically fail.
arXiv Detail & Related papers (2020-09-09T10:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.