Magnon mediated spin entanglement in the strong coupling regime
- URL: http://arxiv.org/abs/2204.02533v1
- Date: Wed, 6 Apr 2022 01:18:19 GMT
- Title: Magnon mediated spin entanglement in the strong coupling regime
- Authors: Vasilios Karanikolas, Takashi Kuroda, and Jun-ichi Inoue
- Abstract summary: Two spin defects (SDs) can be entangled through a magnon polariton mode, within the strong coupling regime.
The thinner AF layers can potentially be used to promote interactions between multiple spins through long range coupling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present that two spin defects (SDs) can be entangled through a magnon
polariton mode, within the strong coupling regime. The magnonic modes are
provided by an antiferromagnetic (AF) MnF$_{2}$ layer and their dispersion is
characterized by the layer's thickness. The macroscopic quantum electrodynamics
theory is used to describe the light-matter interactions, where the Green's
functions are its core element. The individual SD relaxes by exciting the
magnon polariton modes, exhibiting high enhancement values of the Purcell
factor. When two SDs are considered, an oscillatory population exchange is
observed between them, a sign of strong light-matter coupling, where the
concurrence value is used to quantify the level of entanglement. The thinner AF
layers can potentially be used to promote interactions between multiple spins
through long range coupling, this is a desired feature to fabricate high demand
applications in the fields of quantum measurement and computation.
Related papers
- Zeeman polaritons as a platform for probing Dicke physics in condensed matter [2.523996579776851]
We show that a spin--boson system is more compatible with the Dicke model and has advantages over boson--boson systems for pursuing experimental realizations of phenomena predicted for ultrastrongly coupled light--matter hybrids.
This finding demonstrates that a spin--boson system is more compatible with the Dicke model and has advantages over boson--boson systems for pursuing experimental realizations of phenomena predicted for ultrastrongly coupled light--matter hybrids.
arXiv Detail & Related papers (2024-09-25T20:28:01Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Fragmented superconductivity in the Hubbard model as solitons in
Ginzburg-Landau theory [58.720142291102135]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Spin-selective strong light-matter coupling in a 2D hole gas-microcavity
system [0.0]
We report a selective strong light-matter interaction by harnessing a 2D gas in the quantum Hall regime coupled to a microcavity.
We provide a quantitative understanding of the phenomenon by modeling the coupling of optical transitions between Landau levels to the microcavity.
This method introduces a control tool over the spin degree of freedom in polaritonic semiconductor systems.
arXiv Detail & Related papers (2023-02-12T23:10:20Z) - Quantum amplification of spin currents in cavity magnonics by a
parametric drive induced long-lived mode [0.0]
Cavity-mediated magnon-magnon coupling can lead to a transfer of spin-wave excitations between two spatially separated magnetic samples.
We show how the application of a two-photon parametric drive to the cavity can lead to stark amplification in this transfer efficiency.
arXiv Detail & Related papers (2022-10-12T03:28:14Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Optomagnonics in dispersive media: magnon-photon coupling enhancement at
the epsilon-near-zero frequency [0.0]
Single-magnon photon optomagnonic coupling can be comparable to the uniform magnon's frequency for small magnetic volumes.
Non-linear energy spectrum intrinsic to this coupling regime regime can be probed via the characteristic multiple magnon sidebands in the photon power spectrum.
arXiv Detail & Related papers (2021-10-06T18:00:22Z) - Designer Magnetism in High Entropy Oxides [41.74498230885008]
Disorder can have a dominating influence on correlated and quantum materials.
In magnetic systems, spin and exchange disorder can provide access to quantum criticality, frustration, and spin dynamics.
We show that high entropy oxides present an unexplored route to designing quantum materials.
arXiv Detail & Related papers (2021-04-12T15:21:48Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.