State Initialization of a Hot Spin Qubit in a Double Quantum Dot by
Measurement-Based Quantum Feedback Control
- URL: http://arxiv.org/abs/2204.02565v2
- Date: Fri, 11 Nov 2022 15:26:37 GMT
- Title: State Initialization of a Hot Spin Qubit in a Double Quantum Dot by
Measurement-Based Quantum Feedback Control
- Authors: Azzouz Aarab, R\'emi Azouit, Vincent Reiher, Yves
B\'erub\'e-Lauzi\`ere
- Abstract summary: The protocol robustly prepares the spin in shorter time and reach a higher fidelity, which can be pre-set.
It is also effective at high temperatures, which is critical for the current efforts towards scaling up the number of qubits in quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A measurement-based quantum feedback protocol is developed for spin state
initialization in a gate-defined double quantum dot spin qubit coupled to a
superconducting resonator. The protocol improves qubit state initialization as
it is able to robustly prepare the spin in shorter time and reach a higher
fidelity, which can be pre-set. Being able to pre-set the fidelity aimed at is
a highly desired feature enabling qubit initialization to be more
deterministic. The protocol developed herein is also effective at high
temperatures, which is critical for the current efforts towards scaling up the
number of qubits in quantum computers.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Rapid single-shot parity spin readout in a silicon double quantum dot
with fidelity exceeding 99 % [0.0]
Silicon-based spin qubits offer a potential pathway toward realizing a scalable quantum computer.
Recent experiments have demonstrated crucial technologies, including high-fidelity quantum gates and multiqubit operation.
The realization of a fault-tolerant quantum computer requires a high-fidelity spin measurement faster than decoherence.
arXiv Detail & Related papers (2023-09-01T02:59:04Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Universal control of a six-qubit quantum processor in silicon [0.0]
Future quantum computers will require a large number of qubits that can be operated reliably.
We design, fabricate and operate a six-qubit processor with a focus on careful Hamiltonian engineering.
These advances will allow for testing of increasingly meaningful quantum protocols.
arXiv Detail & Related papers (2022-02-18T15:28:29Z) - Quantum jump metrology in a two-cavity network [0.0]
In interferometry, quantum physics is used to enhance measurement precision.
An alternative approach is quantum metrology jump [L. A. Clark et al., Phys A 99, 022102] which deduces information by continuously monitoring an open quantum system.
It is shown that the proposed approach can exceed the standard quantum limit without the need for complex quantum states being scalable.
arXiv Detail & Related papers (2022-01-12T10:53:24Z) - Dispersive qubit readout with machine learning [0.08399688944263842]
Open quantum systems can undergo dissipative phase transitions, and their critical behavior can be exploited in sensing applications.
A recently introduced measurement protocol uses the parametric (two-photon driven) Kerr resonator's driven-dissipative phase transition to reach single-qubit detection fidelity of 99.9%.
We use machine learning-based classification algorithms to extract information from this critical dynamics.
arXiv Detail & Related papers (2021-12-10T04:25:43Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.