論文の概要: Consensual Aggregation on Random Projected High-dimensional Features for
Regression
- arxiv url: http://arxiv.org/abs/2204.02606v1
- Date: Wed, 6 Apr 2022 06:35:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 13:02:30.077020
- Title: Consensual Aggregation on Random Projected High-dimensional Features for
Regression
- Title(参考訳): 回帰のためのランダム予測高次元特徴に関する合意集約
- Authors: Sothea Has (LPSM, UPMC)
- Abstract要約: 本稿では,ランダムに投影された回帰予測の高次元的特徴に対するカーネルベースの合意アグリゲーションについて検討する。
集約方式は, 非常に大きく, 高い相関性を持つ特徴に対して, その性能を保っていることを数値的に説明する。
提案手法の効率性は,様々な種類の合成データセットと実データセットで評価されたいくつかの実験を通して説明される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a study of a kernel-based consensual aggregation on
randomly projected high-dimensional features of predictions for regression. The
aggregation scheme is composed of two steps: the high-dimensional features of
predictions, given by a large number of regression estimators, are randomly
projected into a smaller subspace using Johnson-Lindenstrauss Lemma in the
first step, and a kernel-based consensual aggregation is implemented on the
projected features in the second step. We theoretically show that the
performance of the aggregation scheme is close to the performance of the
aggregation implemented on the original high-dimensional features, with high
probability. Moreover, we numerically illustrate that the aggregation scheme
upholds its performance on very large and highly correlated features of
predictions given by different types of machines. The aggregation scheme allows
us to flexibly merge a large number of redundant machines, plainly constructed
without model selection or cross-validation. The efficiency of the proposed
method is illustrated through several experiments evaluated on different types
of synthetic and real datasets.
- Abstract(参考訳): 本稿では,回帰予測のランダムに投影された高次元特徴に対するカーネルベースの合意アグリゲーションについて検討する。
このアグリゲーションスキームは2つのステップから構成される: 多数の回帰推定器によって与えられる予測の高次元的特徴は、第1ステップでJohnson-Lindenstrauss Lemmaを用いてランダムに小さな部分空間に投影され、第2ステップで投影された特徴に対してカーネルベースのコンセンサスアグリゲーションが実装される。
理論上, アグリゲーションスキームの性能は, 元の高次元特徴に実装されたアグリゲーションの性能に近いことを高い確率で示す。
さらに, この集約方式は, 異なる種類の機械が与える予測の非常に大きく, 高い相関性を有する特徴にその性能を保っていることを数値的に示す。
このアグリゲーション方式により、モデル選択やクロスバリデーションを使わずに、多数の冗長マシンを柔軟にマージできる。
提案手法の有効性は,様々な種類の合成データと実データを用いて評価したいくつかの実験によって示される。
関連論文リスト
- Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
本稿では,高密度マッチングタスク用に設計されたTransformerベースの積分機能とコスト集約ネットワークを提案する。
まず, 特徴集約とコスト集約が異なる特徴を示し, 双方の集約プロセスの司法的利用から生じる実質的な利益の可能性を明らかにした。
本フレームワークは意味マッチングのための標準ベンチマークで評価され,また幾何マッチングにも適用された。
論文 参考訳(メタデータ) (2024-03-17T07:02:55Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
RGM(Robust Generalist Matching)と呼ばれる疎密マッチングのための深部モデルを提案する。
合成トレーニングサンプルと実世界のシナリオのギャップを狭めるために、我々は、疎対応基盤真理を持つ新しい大規模データセットを構築した。
さまざまな密集したスパースなデータセットを混ぜ合わせることができ、トレーニングの多様性を大幅に改善しています。
論文 参考訳(メタデータ) (2023-10-18T07:30:08Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Parallel integrative learning for large-scale multi-response regression
with incomplete outcomes [1.7403133838762448]
ビッグデータの時代には、不完全な結果、多数の応答、および予測者の高次元の共存は、推定、予測、および計算において前例のない課題を引き起こします。
不完全な結果を伴う大規模マルチレスポンス回帰のためのスケーラブルかつ計算効率の高い手順であるPEERを提案する。
いくつかの穏やかな規則条件下では、PEERは推定、予測、変数選択の一貫性を含む素晴らしいサンプリング特性を楽しんでいます。
論文 参考訳(メタデータ) (2021-04-11T19:01:24Z) - A Forward Backward Greedy approach for Sparse Multiscale Learning [0.0]
本稿では,カーネルが重み付きマルチスケール構造を持つRKHS(Reproduction Kernel Hilbert space)を提案する。
この空間における近似を生成するために、多スケール構造を持つ基底関数の集合をゆるやかに構成できる実用的なフォワードバックワードアルゴリズムを提供する。
我々は,様々なシミュレーションと実データ集合を用いて,アプローチの性能を解析する。
論文 参考訳(メタデータ) (2021-02-14T04:22:52Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
我々は,各層で変数選択を行うマルチオミックロジスティック回帰に対する2段階のアプローチを実装した。
私たちのアプローチは、可能な限り多くの関連する予測子を選択することを目標とすべきです。
提案手法により,分子レベルでの心筋メタボリックシンドロームの特徴を同定することができる。
論文 参考訳(メタデータ) (2020-08-01T10:36:27Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
階層は、連続的により微細なスケールで特定される近似空間から従う。
各スケールでのモデル一般化を促進するため,複数次元にわたる新規な射影型ペナルティ演算子も導入する。
その結果、合成データセットと実データセットの両方において、データ削減およびモデリング戦略としてのアプローチの性能が示された。
論文 参考訳(メタデータ) (2020-06-09T18:32:24Z) - A Hybrid Two-layer Feature Selection Method Using GeneticAlgorithm and
Elastic Net [6.85316573653194]
本稿では,ラッパーと組込み方式を組み合わせたハイブリッドな2層特徴選択手法を提案する。
遺伝的アルゴリズム(GA)は、予測子の最適なサブセットを探索するラッパーとして採用されている。
提案手法に第2層を追加し,残余/非関連予測器を除去し,予測精度を向上させる。
論文 参考訳(メタデータ) (2020-01-30T05:01:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。