論文の概要: Super-resolved multi-temporal segmentation with deep
permutation-invariant networks
- arxiv url: http://arxiv.org/abs/2204.02631v1
- Date: Wed, 6 Apr 2022 07:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 22:49:29.687318
- Title: Super-resolved multi-temporal segmentation with deep
permutation-invariant networks
- Title(参考訳): 深い置換不変ネットワークを用いた超解極多重時間分割
- Authors: Diego Valsesia, Enrico Magli
- Abstract要約: 超解像推論問題を研究することにより,従来の画像再構成を超える高分解能化を実現した。
分割タスクに必要な豊富な意味情報を推測できる多分解能融合モジュールを用いた時間変分不変性を利用したモデルを提案する。
この論文で提示されたモデルは、最近、エンハンストセンチネル2農業に関するAI4EOチャレンジで優勝した。
- 参考スコア(独自算出の注目度): 28.09290310071686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-image super-resolution from multi-temporal satellite acquisitions of a
scene has recently enjoyed great success thanks to new deep learning models. In
this paper, we go beyond classic image reconstruction at a higher resolution by
studying a super-resolved inference problem, namely semantic segmentation at a
spatial resolution higher than the one of sensing platform. We expand upon
recently proposed models exploiting temporal permutation invariance with a
multi-resolution fusion module able to infer the rich semantic information
needed by the segmentation task. The model presented in this paper has recently
won the AI4EO challenge on Enhanced Sentinel 2 Agriculture.
- Abstract(参考訳): シーンのマルチ時間衛星からのマルチイメージ超解像は、新しいディープラーニングモデルにより、最近大きな成功を収めている。
本稿では,超解像推論問題である意味セグメンテーションをセンシングプラットフォームよりも高い空間分解能で検討することで,従来の画像再構成をより高い解像度で達成する。
分割タスクに必要なリッチな意味情報を推測できる多分解能融合モジュールを用いて,時間的置換不変性を利用した最近のモデルを拡張した。
この論文で提示されたモデルは、最近、強化センチネル2農業に関するAI4EOチャレンジで優勝した。
関連論文リスト
- Multi-granularity Contrastive Cross-modal Collaborative Generation for End-to-End Long-term Video Question Answering [53.39158264785098]
ビデオQA(Long-term Video Question Answering)は、視覚的および言語的ブリッジングの課題である。
マルチグラニュラリティ コントラスト クロスモーダル・コラボレーティブ・ジェネレーション・モデル。
論文 参考訳(メタデータ) (2024-10-12T06:21:58Z) - Obtaining Favorable Layouts for Multiple Object Generation [50.616875565173274]
大規模なテキスト・ツー・イメージモデルでは、テキスト・プロンプトに基づいて高品質で多様な画像を生成することができる。
しかし、既存の最先端拡散モデルでは、複数の被写体を含む画像を生成する際に困難に直面している。
誘導原理に基づく新しい手法を提案し、拡散モデルが最初にレイアウトを提案し、次にレイアウトグリッドを並べ替えることを可能にする。
これは、提案したマスクに固執するようにクロスアテンションマップ(XAM)を強制し、潜在マップから私たちによって決定された新しい場所へピクセルを移動させることによって達成される。
論文 参考訳(メタデータ) (2024-05-01T18:07:48Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) は近年,高解像度自然画像からの高精度物体分割に向けて出現している。
既存の手法は、グローバルなローカライゼーションと局所的な洗練を徐々に完了させるために、退屈な複数のエンコーダ・デコーダストリームとステージに依存している。
これに触発されて、我々は多視点オブジェクト認識問題としてdisをモデル化し、擬似多視点アグリゲーションネットワーク(MVANet)を提供する。
一般的なdis-5Kデータセットの実験では、我々のMVANetは精度と速度の両方で最先端の手法を大きく上回っている。
論文 参考訳(メタデータ) (2024-04-11T03:00:00Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
DINOv2から抽出したロバストな特徴を利用したマルチタスク画像復元手法であるmboxtextbfDINO-IRを提案する。
まず,DINOV2の浅い特徴を動的に融合するPSF (Pixel-semantic fusion) モジュールを提案する。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
論文 参考訳(メタデータ) (2023-12-04T06:59:55Z) - Style Transfer and Self-Supervised Learning Powered Myocardium
Infarction Super-Resolution Segmentation [2.8494788038731373]
本研究では,新しいスタイル伝達モデルと同時超解像・分割モデルを組み合わせたパイプラインを提案する。
提案するパイプラインは、拡散テンソルイメージング(DTI)画像を後期ガドリニウム強調(LGE)領域に翻訳することで、画像の拡散テンソルイメージング(DTI)を強化することを目的としている。
低分解能LGE型DTI画像から高分解能マスクを生成するために、エンドツーエンドの超解像分割モデルを導入する。
論文 参考訳(メタデータ) (2023-09-27T08:32:33Z) - Learning Resolution-Adaptive Representations for Cross-Resolution Person
Re-Identification [49.57112924976762]
低解像度(LR)クエリIDイメージと高解像度(HR)ギャラリーイメージとの整合性を実現する。
実際のカメラとの違いにより、クエリ画像が分解能の低下に悩まされることがしばしばあるため、これは困難かつ実用的な問題である。
本稿では,問合せ画像の解像度に適応する動的計量を用いて,HRとLRの画像を直接比較するためのSRフリーなパラダイムについて検討する。
論文 参考訳(メタデータ) (2022-07-09T03:49:51Z) - Sci-Net: a Scale Invariant Model for Building Detection from Aerial
Images [0.0]
本研究では,空間分解能の異なる空間画像に存在している建物を分割できるスケール不変ニューラルネットワーク(Sci-Net)を提案する。
具体的には,U-Netアーキテクチャを改良し,それを高密度なASPP(Atrous Space Pyramid Pooling)で融合し,微細なマルチスケール表現を抽出した。
論文 参考訳(メタデータ) (2021-11-12T16:45:20Z) - Interpretable Deep Multimodal Image Super-Resolution [23.48305854574444]
マルチモーダル画像超解像(Multimodal image super- resolution, SR)は、高分解能画像の再構成である。
本稿では,結合した疎結合を組み込んだマルチモーダルディープネットワーク設計を行い,他のモーダルからの情報を再構成プロセスに効果的に融合させる。
論文 参考訳(メタデータ) (2020-09-07T14:08:35Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
ディープラーニング手法は、低解像度の入力から高解像度の出力へのエンドツーエンドのマッピングを学習するために、トレーニングデータに依存する。
本稿では,スパース事前を組み込んだマルチモーダル深層学習設計を提案し,他の画像モダリティからの情報をネットワークアーキテクチャに効果的に統合する。
提案手法は,サイド情報を用いた畳み込みスパース符号化の反復的アルゴリズムに類似した,新しい展開演算子に依存している。
論文 参考訳(メタデータ) (2020-01-21T14:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。