論文の概要: Multi-task Image Restoration Guided By Robust DINO Features
- arxiv url: http://arxiv.org/abs/2312.01677v3
- Date: Fri, 16 Aug 2024 14:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 20:55:33.004997
- Title: Multi-task Image Restoration Guided By Robust DINO Features
- Title(参考訳): ロバストなDINO特徴によるマルチタスク画像復元
- Authors: Xin Lin, Jingtong Yue, Kelvin C. K. Chan, Lu Qi, Chao Ren, Jinshan Pan, Ming-Hsuan Yang,
- Abstract要約: DINOv2から抽出したロバストな特徴を利用したマルチタスク画像復元手法であるmboxtextbfDINO-IRを提案する。
まず,DINOV2の浅い特徴を動的に融合するPSF (Pixel-semantic fusion) モジュールを提案する。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
- 参考スコア(独自算出の注目度): 88.74005987908443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task image restoration has gained significant interest due to its inherent versatility and efficiency compared to its single-task counterpart. However, performance decline is observed with an increase in the number of tasks, primarily attributed to the restoration model's challenge in handling different tasks with distinct natures at the same time. Thus, a perspective emerged aiming to explore the degradation-insensitive semantic commonalities among different degradation tasks. In this paper, we observe that the features of DINOv2 can effectively model semantic information and are independent of degradation factors. Motivated by this observation, we propose \mbox{\textbf{DINO-IR}}, a multi-task image restoration approach leveraging robust features extracted from DINOv2 to solve multi-task image restoration simultaneously. We first propose a pixel-semantic fusion (PSF) module to dynamically fuse DINOV2's shallow features containing pixel-level information and deep features containing degradation-independent semantic information. To guide the restoration model with the features of DINOv2, we develop a DINO-Restore adaption and fusion module to adjust the channel of fused features from PSF and then integrate them with the features from the restoration model. By formulating these modules into a unified deep model, we propose a DINO perception contrastive loss to constrain the model training. Extensive experimental results demonstrate that our DINO-IR performs favorably against existing multi-task image restoration approaches in various tasks by a large margin. The source codes and trained models will be made available.
- Abstract(参考訳): マルチタスク画像復元は、シングルタスクに比べて、その固有の汎用性と効率性から、大きな関心を集めている。
しかし、タスク数の増加に伴い、パフォーマンスの低下が観察され、これは主に、異なるタスクを異なる性質で同時に扱うという、復元モデルの課題に起因する。
このようにして、異なる劣化タスク間の劣化に敏感なセマンティック共通性を探究する視点が浮上した。
本稿では,DINOv2の特徴が意味情報を効果的にモデル化し,劣化要因に依存しないことを示す。
そこで本研究では,DINOv2 から抽出したロバストな特徴を利用したマルチタスク画像復元手法である \mbox{\textbf{DINO-IR}} を提案する。
まず、DINOV2の浅部特徴に画素レベルの情報と劣化に依存しない意味情報を含む深部特徴を動的に融合するPSF(Pixel-semantic fusion)モジュールを提案する。
修復モデルをDINOv2の特徴で導くため,PSFから融合した特徴のチャネルを調整し,復元モデルからの特徴と統合するDINO-Restore適応・融合モジュールを開発した。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
我々のDINO-IRは、様々なタスクにおいて、既存のマルチタスク画像復元アプローチに対して、大きなマージンで好適に機能することを示した。
ソースコードとトレーニングされたモデルが利用可能になる。
関連論文リスト
- Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
VmambaIRは、画像復元タスクに線形に複雑な状態空間モデル(SSM)を導入する。
VmambaIRは、より少ない計算資源とパラメータで最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2024-03-18T02:38:55Z) - FeatUp: A Model-Agnostic Framework for Features at Any Resolution [24.4201195336725]
FeatUpは、失われた空間情報を深い特徴で復元するためのタスクおよびモデルに依存しないフレームワークである。
FeatUpの2つのバリエーションを紹介します。1つは、1つのフォワードパスで高分解能信号で特徴を導くもので、もう1つは暗黙のモデルを1つのイメージに適合させて、任意の解像度で特徴を再構成するものです。
FeatUpは、クラスアクティベーションマップ生成、セグメンテーションとデプス予測のためのトランスファーラーニング、セグメンテーションのためのエンドツーエンドトレーニングにおいて、他の機能アップサンプリングや画像超解像アプローチよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-03-15T17:57:06Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
本稿では, 複雑な画像劣化を基本劣化の観点で表現できる, という新しい概念を提案する。
We propose the Unified-Width Adaptive Dynamic Network (U-WADN) which consist of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)。
提案したU-WADNは、最大32.3%のFLOPを同時に削減し、約15.7%のリアルタイム加速を実現している。
論文 参考訳(メタデータ) (2024-01-24T04:25:12Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - DRM-IR: Task-Adaptive Deep Unfolding Network for All-In-One Image
Restoration [5.573836220587265]
本研究は,効率的な動的参照モデリングパラダイム(DRM-IR)を提案する。
DRM-IRはタスク適応型劣化モデリングとモデルベースの画像復元で構成されている。
複数のベンチマークデータセットの実験は、DRM-IRがAll-In-One IRで最先端のIRを達成することを示している。
論文 参考訳(メタデータ) (2023-07-15T02:42:19Z) - Super-resolution Reconstruction of Single Image for Latent features [8.857209365343646]
単一像超解像(SISR)は、通常、様々な劣化した低分解能(LR)画像を単一の高分解能(HR)画像に復元することに焦点を当てる。
モデルが細部やテクスチャの多様性を保ちながら、高品質かつ迅速なサンプリングを同時に維持することは、しばしば困難である。
この課題は、モデル崩壊、再構成されたHR画像におけるリッチディテールとテクスチャの特徴の欠如、モデルサンプリングの過剰な時間消費などの問題を引き起こす可能性がある。
論文 参考訳(メタデータ) (2022-11-16T09:37:07Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z) - Gated Fusion Network for Degraded Image Super Resolution [78.67168802945069]
本稿では,基本特徴と回復特徴を別々に抽出する二分岐畳み込みニューラルネットワークを提案する。
特徴抽出ステップを2つのタスク非依存ストリームに分解することで、デュアルブランチモデルがトレーニングプロセスを容易にすることができる。
論文 参考訳(メタデータ) (2020-03-02T13:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。