論文の概要: Koopman-based spectral clustering of directed and time-evolving graphs
- arxiv url: http://arxiv.org/abs/2204.02951v1
- Date: Wed, 6 Apr 2022 17:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 14:54:45.053389
- Title: Koopman-based spectral clustering of directed and time-evolving graphs
- Title(参考訳): koopmanによる有向グラフと時間発展グラフのスペクトルクラスタリング
- Authors: Stefan Klus, Natasa Djurdjevac Conrad
- Abstract要約: 非指向グラフのためのスペクトルクラスタリングアルゴリズムは十分に確立されており、教師なし機械学習問題にうまく適用されている。
しかし、有向グラフのクラスタ化は依然として困難であり、有向グラフのクラスタの定義は広く受け入れられていない。
ラプラシアンと転送演算子の関係を用いた有向グラフと時間進化グラフのクラスタリングアルゴリズムを導出する。
結果として得られるクラスターはコヒーレントな集合として解釈することができ、流体の輸送と混合過程の解析において重要な役割を果たす。
- 参考スコア(独自算出の注目度): 0.3655021726150368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While spectral clustering algorithms for undirected graphs are well
established and have been successfully applied to unsupervised machine learning
problems ranging from image segmentation and genome sequencing to signal
processing and social network analysis, clustering directed graphs remains
notoriously difficult. Two of the main challenges are that the eigenvalues and
eigenvectors of graph Laplacians associated with directed graphs are in general
complex-valued and that there is no universally accepted definition of clusters
in directed graphs. We first exploit relationships between the graph Laplacian
and transfer operators and in particular between clusters in undirected graphs
and metastable sets in stochastic dynamical systems and then use a
generalization of the notion of metastability to derive clustering algorithms
for directed and time-evolving graphs. The resulting clusters can be
interpreted as coherent sets, which play an important role in the analysis of
transport and mixing processes in fluid flows.
- Abstract(参考訳): 非指向グラフのスペクトルクラスタリングアルゴリズムは確立されており、画像セグメント化やゲノムシークエンシングから信号処理やソーシャルネットワーク分析まで、教師なし機械学習問題にうまく適用されているが、クラスタリング指向グラフはいまだに非常に難しい。
2つの主な課題は、有向グラフに関連付けられたグラフラプラシアンの固有値と固有ベクトルが一般に複素値であり、有向グラフのクラスタの定義が普遍的に受け入れられていないことである。
まず、グラフラプラシアンと転送作用素の関係、特に非向グラフのクラスタと確率力学系における準安定集合の関係を活用し、次に、有向グラフと時間発展グラフのクラスタリングアルゴリズムを導出するためにメタスタビリティの概念の一般化を利用する。
結果として得られるクラスターはコヒーレントな集合として解釈することができ、流体の輸送と混合過程の解析において重要な役割を果たす。
関連論文リスト
- Clustering Time-Evolving Networks Using the Spatio-Temporal Graph Laplacian [0.8643517734716606]
我々は既存のスペクトルアルゴリズムを一般化し、時間変化のあるグラフ構造におけるコミュニティを特定し解析する。
テンポラル指向グラフ Laplacian は、有向および無向クラスタの時間経過に伴うクラスタ構造進化の明確な解釈を可能にすることを示す。
論文 参考訳(メタデータ) (2024-07-12T14:31:54Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - HeNCler: Node Clustering in Heterophilous Graphs through Learned Asymmetric Similarity [55.27586970082595]
HeNClerは、Heterophilous Node Clusteringの新しいアプローチである。
HeNClerは異種グラフコンテキストにおけるノードクラスタリングタスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-05-27T11:04:05Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Transfer operators on graphs: Spectral clustering and beyond [1.147633309847809]
直交グラフのスペクトルクラスタリングは、クープマン作用素の固有関数の観点から解釈できることを示す。
一般化された転送演算子に基づく有向グラフの新しいクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-19T15:52:08Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - Generalized Spectral Clustering for Directed and Undirected Graphs [4.286327408435937]
本稿では、有向グラフと無向グラフの両方に対処できる一般化スペクトルクラスタリングフレームワークを提案する。
我々のアプローチは、グラフ関数の一般化されたディリクレエネルギーとして導入する新しい函数のスペクトル緩和に基づいている。
また、グラフ上の自然ランダムウォークの反復パワーから構築された正規化尺度の実用的なパラメトリゼーションを提案する。
論文 参考訳(メタデータ) (2022-03-07T09:18:42Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Higher-Order Spectral Clustering of Directed Graphs [8.997952791113232]
クラスタリングはアルゴリズムにおいて重要なトピックであり、機械学習、コンピュータビジョン、統計学、その他いくつかの研究分野に多くの応用がある。
本稿では,グラフクラスタリングのためのほぼ線形時間アルゴリズムを提案し,提案アルゴリズムが妥当な仮定の下でサブ線形時間で実装可能であることを示す。
論文 参考訳(メタデータ) (2020-11-10T13:06:37Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。