Gravitational time dilation as a resource in quantum sensing
- URL: http://arxiv.org/abs/2204.03006v1
- Date: Wed, 6 Apr 2022 18:00:05 GMT
- Title: Gravitational time dilation as a resource in quantum sensing
- Authors: Carlo Cepollaro, Flaminia Giacomini, Matteo G.A. Paris
- Abstract summary: We investigate whether gravitational time dilation may be also used as a resource in quantum information theory.
We show that for a freely falling interferometer and for a Mach-Zehnder interferometer, the gravitational time dilation may enhance the precision in estimating the gravitational acceleration for long interferometric times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atomic clock interferometers are a valuable tool to test the interface
between quantum theory and gravity, in particular via the measurement of
gravitational time dilation in the quantum regime. Here, we investigate whether
gravitational time dilation may be also used as a resource in quantum
information theory. In particular, we show that for a freely falling
interferometer and for a Mach-Zehnder interferometer, the gravitational time
dilation may enhance the precision in estimating the gravitational acceleration
for long interferometric times. To this aim, the interferometric measurements
should be performed on both the path and the clock degrees of freedom.
Related papers
- Local Measurement Scheme of Gravitational Curvature using Atom Interferometers [0.4124271833765226]
We present a method in which the differential signal of two co-located interferometers singles out a phase shift proportional to the curvature of the gravitational potential.
We numerically simulate such a co-located gradiometric interferometer in the context of the Hannover VLBAI facility.
arXiv Detail & Related papers (2024-09-05T13:29:45Z) - Feynman Diagrams for Matter Wave Interferometry [0.0]
We introduce a new theoretical framework based on Feynman diagrams to compute phase shifts in matter wave interferometry.
We apply the method to compute the response of matter wave interferometers to power law potentials and potentials with an arbitrary spatial dependence.
arXiv Detail & Related papers (2024-07-16T07:26:19Z) - Gravitational wave memory and quantum Michelson interferometer [0.0]
We examined the output of a quantum Michelson interferometer incorporating effects of nonlinear optomechanical interaction and time-varying gravitational fields.
Our findings indicate a deviation from the standard relationship between the phase shift of the interferometer's output and the amplitude of gravitational waves.
arXiv Detail & Related papers (2023-12-16T13:58:57Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - Measuring space-time curvature using maximally path-entangled quantum
states [0.0]
gravitational aspects of quantum experiments performed so far can be explained either within Newtonian gravity or by Einstein's equivalence principle.
We show that the entanglement-induced increase in sensitivity also holds for gravitationally-induced phases in Mach-Zehnder interferometers.
arXiv Detail & Related papers (2022-02-25T08:50:58Z) - Resolving the gravitational redshift within a millimeter atomic sample [94.94540201762686]
Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates.
We measure a linear frequency gradient consistent with the gravitational redshift within a single millimeter scale sample of ultracold strontium.
arXiv Detail & Related papers (2021-09-24T23:58:35Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z) - Interference of Clocks: A Quantum Twin Paradox [39.645665748998816]
Phase of matter waves depends on proper time and is susceptible to special-relativistic (kinematic) and gravitational (redshift) time dilation.
It is conceivable that atom interferometers measure general-relativistic time-dilation effects.
We show that closed light-pulse interferometers without clock transitions during the pulse sequence are not sensitive to gravitational time dilation in a linear potential.
arXiv Detail & Related papers (2019-05-22T12:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.