Fault-Tolerant Directional Couplers for State Manipulation in Silicon
Photonic-Integrated Circuits
- URL: http://arxiv.org/abs/2204.03369v1
- Date: Thu, 7 Apr 2022 11:36:29 GMT
- Title: Fault-Tolerant Directional Couplers for State Manipulation in Silicon
Photonic-Integrated Circuits
- Authors: Moshe Katzman, Yonatan Piasetzky, Evyatar Rubin, Ben Birenboim, Maayan
Priel, Avi Zadok and Haim Suchowski
- Abstract summary: Photonic integrated circuits play a central role in current and future applications such as communications, sensing, ranging, and information processing.
Fault-tolerant quantum computing mandates very accurate and robust quantum gates.
We demonstrate high-fidelity directional couplers for single-qubit gates in photonic integrated waveguides.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Photonic integrated circuits play a central role in current and future
applications such as communications, sensing, ranging, and information
processing. Photonic quantum computing will also likely require an integrated
optics architecture for improved stability, scalability, and performance.
Fault-tolerant quantum computing mandates very accurate and robust quantum
gates. In this work, we demonstrate high-fidelity directional couplers for
single-qubit gates in photonic integrated waveguides, utilizing a novel scheme
of detuning-modulated composite segments. Specific designs for reduced
sensitivity to wavelength variations and real-world geometrical fabrication
errors in waveguides width and depth are presented. Enhanced wavelength
tolerance is demonstrated experimentally. The concept shows great promise for
scaling high fidelity gates as part of integrated quantum optics architectures.
Related papers
- Universal Logical Quantum Photonic Neural Network Processor via Cavity-Assisted Interactions [0.0]
We propose an architecture to prepare and perform logical quantum operations on arbitrary multimode multi-photon states using a quantum photonic neural network.
The proposed architecture paves the way for near-term quantum photonic processors that enable error-corrected quantum computation.
arXiv Detail & Related papers (2024-10-02T23:21:50Z) - Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Scalable Fault-Tolerant Quantum Technologies with Silicon Colour Centres [0.0]
A novel quantum information processing architecture based on optically active spins in silicon is proposed.
It offers a combined platform for scalable fault-tolerant quantum computing and networking.
arXiv Detail & Related papers (2023-11-08T17:52:57Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - On-chip parallel processing of quantum frequency combs for
high-dimensional hyper-entanglement generation [4.1893829542288294]
High-dimensional encoding and hyper-entanglement are unique features that distinguish optical photons from other quantum information carriers.
Here we demonstrate the chip-scale solution to the generation and manipulation of high-dimensional hyper-entanglement.
Our work provides the critical step for the efficient and parallel processing of quantum information with integrated photonics.
arXiv Detail & Related papers (2021-11-24T20:32:16Z) - A new concept for design of photonic integrated circuits with the
ultimate density and low loss [62.997667081978825]
We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
arXiv Detail & Related papers (2021-08-02T14:23:18Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.