A new concept for design of photonic integrated circuits with the
ultimate density and low loss
- URL: http://arxiv.org/abs/2108.00928v1
- Date: Mon, 2 Aug 2021 14:23:18 GMT
- Title: A new concept for design of photonic integrated circuits with the
ultimate density and low loss
- Authors: Jovana Petrovic, Jelena Krsic, Peter J. J. Veerman and Aleksandra
Maluckov
- Abstract summary: We propose a new concept for design of PICs with the ultimate downscaling capability, the absence of geometric loss and a high-fidelity throughput.
This is achieved by a periodic continuous-time quantum walk of photons through waveguide arrays.
We demonstrate the potential of the new concept by reconsidering the design of basic building blocks of the information and sensing systems.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We challenge the current thinking and approach to the design of photonic
integrated circuits (PICs) for applications in communications, quantum
information and sensing. The standard PICs are based on directional couplers,
that provide a wide range of functionalities but do not fully respond to the
major technological challenges: massive parallelisation of transmission
channels, low-energy dissipation and small footprint. We propose a new concept
for design of PICs with the ultimate downscaling capability, the absence of
geometric loss and a high-fidelity throughput. This is achieved by a periodic
continuous-time quantum walk of photons through waveguide arrays that leverages
on the simple and effective algebraic approach to engineering waveguide
couplings. We demonstrate the potential of the new concept by reconsidering the
design of basic building blocks of the information and sensing systems:
interconnects, multiport couplers, entanglement generators and interferometers.
An extensive feasibility check in dielectric and semiconductor fabrication
platforms confirmed this potential.
Related papers
- Single-photon detectors on arbitrary photonic substrates [2.143182930148198]
Superconducting nanowire single photon detectors (SNSPDs) are the leading detector technology for fiber and integrated photonic applications.
Here, we introduce a method based on transfer printing that overcomes these constraints and allows for the integration of SNSPDs onto arbitrary photonic substrates.
arXiv Detail & Related papers (2024-09-12T21:58:05Z) - Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Quantum state heralding using photonic integrated circuits with free
electrons [0.0]
We analyze the feasibility of high fidelity and high purity quantum state heralding using a free electron and a photonic integrated circuit with parametric coupling.
We propose schemes to shape useful electron and photonic states in different application scenarios.
arXiv Detail & Related papers (2022-06-16T11:36:43Z) - Fault-Tolerant Directional Couplers for State Manipulation in Silicon
Photonic-Integrated Circuits [0.0]
Photonic integrated circuits play a central role in current and future applications such as communications, sensing, ranging, and information processing.
Fault-tolerant quantum computing mandates very accurate and robust quantum gates.
We demonstrate high-fidelity directional couplers for single-qubit gates in photonic integrated waveguides.
arXiv Detail & Related papers (2022-04-07T11:36:29Z) - Inverse-design of high-dimensional quantum optical circuits in a complex medium [0.0]
We show how to embed an optical circuit in the higher-dimensional space of a large, ambient mode-mixer.
This allows us to forgo control over each individual circuit element, while retaining a high degree of programmability over the circuit.
Our work serves as an alternative yet powerful approach for realising precise control over high-dimensional quantum states of light.
arXiv Detail & Related papers (2022-04-01T17:08:04Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Exploring complex graphs using three-dimensional quantum walks of
correlated photons [52.77024349608834]
We introduce a new paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks.
This novel testbed for the experimental exploration of multi-particle quantum walks on complex, highly connected graphs paves the way towards exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.
arXiv Detail & Related papers (2020-07-10T09:15:44Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.