論文の概要: AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles
- arxiv url: http://arxiv.org/abs/2204.03504v1
- Date: Sat, 5 Mar 2022 10:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-10 11:08:09.272120
- Title: AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles
- Title(参考訳): 車両インターネットにおけるm2m通信のためのai支援交通制御方式
- Authors: Haijun Zhang, Minghui Jiang, Xiangnan Liu, Keping Long, and Victor
C.M.Leung
- Abstract要約: 交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
- 参考スコア(独自算出の注目度): 61.21359293642559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the rapid growth of data transmissions in internet of vehicles (IoV),
finding schemes that can effectively alleviate access congestion has become an
important issue. Recently, many traffic control schemes have been studied.
Nevertheless, the dynamics of traffic and the heterogeneous requirements of
different IoV applications are not considered in most existing studies, which
is significant for the random access resource allocation. In this paper, we
consider a hybrid traffic control scheme and use proximal policy optimization
(PPO) method to tackle it. Firstly, IoV devices are divided into various
classes based on delay characteristics. The target of maximizing the successful
transmission of packets with the success rate constraint is established. Then,
the optimization objective is transformed into a markov decision process (MDP)
model. Finally, the access class barring (ACB) factors are obtained based on
the PPO method to maximize the number of successful access devices. The
performance of the proposal algorithm in respect of successful events and delay
compared to existing schemes is verified by simulations.
- Abstract(参考訳): 車両のインターネット(IoV)におけるデータ転送の急速な増加により,アクセス混雑を効果的に緩和する手法の発見が課題となっている。
近年,多くの交通制御手法が研究されている。
それでも、トラフィックのダイナミクスと異なるiovアプリケーションの不均一性要件は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッドトラヒック制御方式を検討し,それに取り組むために近位政策最適化(ppo)手法を用いる。
まず、IoVデバイスは遅延特性に基づいて様々なクラスに分けられる。
成功率制約付きパケットの送信を最大化する目標を確立する。
そして、最適化目標をマークフ決定プロセス(MDP)モデルに変換する。
最後に、PPO法に基づいてアクセスクラスバーリング(ACB)係数を求め、アクセスデバイスの成功数を最大化する。
提案手法の性能をシミュレーションにより検証した。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks [12.323383132739195]
我々は,無線ネットワークの選択と自律運転ポリシーを協調的に最適化する,新しい多目的強化学習フレームワークを開発した。
提案フレームワークは,車両の運動力学を制御することにより,交通流の最大化と衝突の最小化を目的としている。
提案されたポリシーにより、自動運転車は、接続性を改善した安全な運転行動を採用することができる。
論文 参考訳(メタデータ) (2024-05-18T16:31:32Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
新たなOpen Radio Access Network(O-RAN)におけるデバイスの大量ランダムアクセスは、アクセス制御と管理に大きな課題をもたらします。
閉ループアクセス制御の強化学習(RL)支援方式を提案する。
深部RL支援SAUDは、連続的かつ高次元の状態と行動空間を持つ複雑な環境を解決するために提案されている。
論文 参考訳(メタデータ) (2023-03-05T12:25:49Z) - Fair and Efficient Distributed Edge Learning with Hybrid Multipath TCP [62.81300791178381]
無線による分散エッジ学習のボトルネックは、コンピューティングから通信へと移行した。
DEL用の既存のTCPベースのデータネットワークスキームは、アプリケーションに依存しず、アプリケーション層要求に応じて調整を施さない。
DELのためのモデルベースと深部強化学習(DRL)に基づくMP TCPを組み合わせたハイブリッドマルチパスTCP(MP TCP)を開発した。
論文 参考訳(メタデータ) (2022-11-03T09:08:30Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - A Learning-Based Fast Uplink Grant for Massive IoT via Support Vector
Machines and Long Short-Term Memory [8.864453148536057]
3IoTは、レイテンシを低減し、スマートインターネット・オブ・シング(mMTC)アプリケーションの信頼性を高めるために、高速アップリンク・アロケーション(FUG)を使用する必要性を導入した。
サポートマシンスケジューラ(SVM)に基づく新しいFUGアロケーションを提案する。
第2に、LSTMアーキテクチャは、予測エラーを克服するためにトラフィック予測と補正技術に使用される。
論文 参考訳(メタデータ) (2021-08-02T11:33:02Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。