論文の概要: A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation
- arxiv url: http://arxiv.org/abs/2403.06884v1
- Date: Mon, 11 Mar 2024 16:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 18:17:00.003670
- Title: A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation
- Title(参考訳): 微視的シミュレーションによる視覚に基づく交通信号制御に向けたホロスティックな枠組み
- Authors: Pan He and Quanyi Li and Xiaoyong Yuan and Bolei Zhou
- Abstract要約: 交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
- 参考スコア(独自算出の注目度): 53.39174966020085
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traffic signal control (TSC) is crucial for reducing traffic congestion that
leads to smoother traffic flow, reduced idling time, and mitigated CO2
emissions. In this study, we explore the computer vision approach for TSC that
modulates on-road traffic flows through visual observation. Unlike traditional
feature-based approaches, vision-based methods depend much less on heuristics
and predefined features, bringing promising potentials for end-to-end learning
and optimization of traffic signals. Thus, we introduce a holistic traffic
simulation framework called TrafficDojo towards vision-based TSC and its
benchmarking by integrating the microscopic traffic flow provided in SUMO into
the driving simulator MetaDrive. This proposed framework offers a versatile
traffic environment for in-depth analysis and comprehensive evaluation of
traffic signal controllers across diverse traffic conditions and scenarios. We
establish and compare baseline algorithms including both traditional and
Reinforecment Learning (RL) approaches. This work sheds insights into the
design and development of vision-based TSC approaches and open up new research
opportunities. All the code and baselines will be made publicly available.
- Abstract(参考訳): 交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚観察によって変調するtscのコンピュータビジョンアプローチについて検討する。
従来の機能ベースアプローチとは異なり、視覚ベースの手法はヒューリスティックや事前定義された機能に依存しず、エンドツーエンドの学習やトラフィック信号の最適化に有望な可能性をもたらす。
そこで我々は,SUMOで提供される微視的トラフィックフローを運転シミュレータMetaDriveに統合することにより,視覚ベースのTSCに向けた交通シミュレーションフレームワークであるTrafficDojoを紹介した。
提案フレームワークは,様々な交通状況やシナリオにわたる交通信号制御装置の詳細な分析と包括的評価を行うために,多様な交通環境を提供する。
従来型および再開発学習(RL)アプローチを含むベースラインアルゴリズムを確立し,比較する。
この研究は、ビジョンベースのtscアプローチの設計と開発に洞察を与え、新しい研究機会を開く。
すべてのコードとベースラインが公開される予定だ。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
本研究は,大規模言語モデルを交通信号制御システムに統合する革新的なアプローチを導入する。
LLMを知覚と意思決定ツールのスイートで強化するハイブリッドフレームワークが提案されている。
シミュレーションの結果から,交通環境の多種性に適応するシステムの有効性が示された。
論文 参考訳(メタデータ) (2024-03-13T08:41:55Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - Learning Traffic Speed Dynamics from Visualizations [3.0969191504482243]
時空の可視化からマクロ交通速度のダイナミクスを学習する深層学習法を提案する。
既存の推定手法と比較して,より詳細な推定解決が可能となる。
次世代シミュレーションプログラム(NGSIM)とドイツ高速道路(HighD)のデータセットから得られたデータを用いて,高速道路区間の高分解能交通速度場を推定した。
論文 参考訳(メタデータ) (2021-05-04T11:17:43Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
提案システムは,最適化に基づくOD行列生成手法と,トラフィックフローのパターンを介してOD行列を予測するニューラルネットワーク(NN)モデルと,微視的トラフィックシミュレータを含む。
ロサンゼルス国際空港(LAX)中央ターミナルエリア(CTA)の道路ネットワーク上で提案システムをテストする。
論文 参考訳(メタデータ) (2020-08-05T01:41:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。